The motor commands required to control voluntary movements under various environmental conditions may be formed by adaptively combining a fixed set of motor primitives. Since this motor output must contend with state-dependent physical dynamics during movement, these primitives are thought to depend on the position and velocity of motion. Using a recently developed "error-clamp" technique, we measured the fine temporal structure of changes in motor output during adaptation. Interestingly, these measurements reveal that motor primitives echo a key feature of the neural coding of limb motion-correlated tuning to position and velocity. We show that this correlated tuning explains why initial stages of motor learning are often rapid and stereotyped, whereas later stages are slower and stimulus specific. With our new understanding of these primitives, we design dynamic environments that are intrinsically the easiest or most difficult to learn, suggesting a theoretical basis for the rational design of improved procedures for motor training and rehabilitation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuron.2009.10.001 | DOI Listing |
J Vis
January 2025
Vision and Control of Action (VISCA) Group, Department of Cognition, Development and Psychology of Education, Institut de Neurociències, Universitat de Barcelona, Barcelona, Catalonia, Spain.
The characterization of how precisely we perceive visual speed has traditionally relied on psychophysical judgments in discrimination tasks. Such tasks are often considered laborious and susceptible to biases, particularly without the involvement of highly trained participants. Additionally, thresholds for motion-in-depth perception are frequently reported as higher compared to lateral motion, a discrepancy that contrasts with everyday visuomotor tasks.
View Article and Find Full Text PDFSports (Basel)
January 2025
Sport Sciences Research Centre, Universidad Rey Juan Carlos, 28943 Fuenlabrada, Spain.
To enhance athletic performance and reduce the risk of injury, load quantification has allowed for a better understanding of the individual characteristics of the physical demands on soccer players during training or competition. In this regard, it appears crucial to summarize scientific evidence to provide useful information and future directions related to the speed and acceleration profiles of male soccer players. This review aims to evaluate the findings reflected in the available literature on both profiles in football, synthesizing and discussing data from scientific articles, while providing insights into quantification methods, employed thresholds, tracking systems, terminology, playing position, and microcycle day.
View Article and Find Full Text PDFJ Imaging
January 2025
Laboratory Health Systemic Process (P2S), UR4129, University Claude Bernard Lyon 1, University of Lyon, 69008 Lyon, France.
As technology develops, consumer behavior and how people search for what they want are constantly evolving. Online shopping has fundamentally changed the e-commerce industry. Although there are more products available than ever before, only a small portion of them are noticed; as a result, a few items gain disproportionate attention.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Group of Biomechatronics, Fachgebiet Biomechatronik, Technische Universität Ilmenau, D-98693 Ilmenau, Germany.
Anguilliform locomotion, an efficient aquatic locomotion mode where the whole body is engaged in fluid-body interaction, contains sophisticated physics. We hypothesized that data-driven modeling techniques may extract models or patterns of the swimmers' dynamics without implicitly measuring the hydrodynamic variables. This work proposes empirical kinematic control and data-driven modeling of a soft swimming robot.
View Article and Find Full Text PDFJ Funct Morphol Kinesiol
December 2024
School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 172 37 Athens, Greece.
The tempo of resistance exercises is known to influence performance outcomes, yet its specific effects on post-activation performance enhancement (PAPE) remain unclear. This study aimed to investigate the effects of fast versus slow repetitions at a load of 70% of one-repetition maximum (1-RM) in the bench press exercise, focusing on velocity, surface electromyographic (sEMG) activity, and applied force while equating time under tension on bench press throw performance. Eleven men (age: 23.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!