A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of collagen digestion on the passive elastic properties of diaphragm muscle in rat. | LitMetric

Effect of collagen digestion on the passive elastic properties of diaphragm muscle in rat.

Med Eng Phys

Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA.

Published: January 2010

Effects of collagen digestion have been defined up to the fibril level. However, the question remains as to whether the alteration of skeletal muscle extracellular matrix (ECM) affects a muscle's passive elastic response. Various elastography methods have been applied as tools for evaluating the mechanical properties and ECM content of skeletal muscle. In an effort to develop an ECM altered skeletal muscle model, this study determined the effect of collagen digestion on the passive elastic properties of skeletal muscle. Passive mechanical properties of rat diaphragms were evaluated in various degrees of collagen digestion. Between cyclic loading tests, muscle strips were immersed in various concentrations of clostridium histolyticum derived bacterial collagenase. All samples were later viewed via light microscopy. Cyclic testing revealed linear relationships between passive muscle stiffness and digestion time at multiple concentrations. These results demonstrate that collagenase digestion of the ECM in skeletal muscle could be used as a simple and reliable model of mechanically altered in vitro tissue samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841476PMC
http://dx.doi.org/10.1016/j.medengphy.2009.11.002DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
20
collagen digestion
16
passive elastic
12
digestion passive
8
elastic properties
8
muscle
8
mechanical properties
8
passive
5
digestion
5
skeletal
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!