As the range of applications for carbon nanotubes (CNTs) rapidly expands, understanding the effect of CNTs on prokaryotic and eukaryotic cell systems has become an important research priority, especially in light of recent reports of the facile dispersion of CNTs in a variety of aqueous systems including natural water. In this study, single-walled carbon nanotubes (SWCNTs) were dispersed in water using a range of natural (gum arabic, amylose, Suwannee River natural organic matter) and synthetic (polyvinyl pyrrolidone, Triton X-100) dispersing agents (dispersants) that attach to the CNT surface non-covalently via different physiosorption mechanisms. The charge and the average effective hydrodynamic diameter of suspended SWCNTs as well as the concentration of exfoliated SWCNTs in the dispersion were found to remain relatively stable over a period of 4 weeks. The cytotoxicity of suspended SWCNTs was assessed as a function of dispersant type and exposure time (up to 48 h) using general viability bioassay with Escherichia coli and using neutral red dye uptake (NDU) bioassay with WB-F344 rat liver epithelia cells. In the E. coli viability bioassays, three types of growth media with different organic loadings and salt contents were evaluated. When the dispersant itself was non-toxic, no losses of E. coli and WB-F344 viability were observed. The cell viability was affected only by SWCNTs dispersed using Triton X-100, which was cytotoxic in SWCNT-free (control) solution. The epigenetic toxicity of dispersed CNTs was evaluated using gap junction intercellular communication (GJIC) bioassay applied to WB-F344 rat liver epithelial cells. With all SWCNT suspensions except those where SWCNTs were dispersed using Triton X-100 (wherein GJIC could not be measured because the sample was cytotoxic), no inhibition of GJIC in the presence of SWCNTs was observed. These results suggest a strong dependence of the toxicity of SWCNT suspensions on the toxicity of the dispersant and point to the potential of non-covalent functionalization with non-toxic dispersants as a method for the preparation of stable aqueous suspensions of biocompatible CNTs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2009.09.042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!