Cytosolic NADP(+)-dependent isocitrate dehydrogenase regulates cadmium-induced apoptosis.

Biochem Pharmacol

School of Life Sciences and Biotechnology, College of Natural Sciences, Kyungpook National University, Taegu 702-701, Republic of Korea.

Published: April 2010

Cadmium ions have a high affinity for thiol groups. Therefore, they may disturb many cellular functions. We recently reported that cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDPc) functions as an antioxidant enzyme to supply NADPH, a major source of reducing equivalents to the cytosol. Cadmium decreased the activity of IDPc both as a purified enzyme and in cultured cells. In the present study, we demonstrate that the knockdown of IDPc expression in HEK293 cells greatly enhances apoptosis induced by cadmium. Transfection of HEK293 cells with an IDPc small interfering RNA significantly decreased the activity of IDPc and enhanced cellular susceptibility to cadmium-induced apoptosis as indicated by the morphological evidence of apoptosis, DNA fragmentation and condensation, cellular redox status, mitochondria redox status and function, and the modulation of apoptotic marker proteins. Taken together, our results suggest that suppressing the expression of IDPc enhances cadmium-induced apoptosis of HEK293 cells by increasing disruption of the cellular redox status.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2009.11.014DOI Listing

Publication Analysis

Top Keywords

cadmium-induced apoptosis
12
hek293 cells
12
redox status
12
cytosolic nadp+-dependent
8
nadp+-dependent isocitrate
8
isocitrate dehydrogenase
8
decreased activity
8
activity idpc
8
cellular redox
8
idpc
6

Similar Publications

N-methyladenosine mediated-NRF2 signaling pathway attenuates cadmium cytotoxicity by inhibiting oxidative damage in bronchial epithelial cells.

Toxicol Lett

December 2024

Institute of Preventive Medicine, School of Public Health, Dali University, No. 22, Wanhua Road, Dali, Yunnan 671000, PR China. Electronic address:

Although N-methyladenosine (mA) and its regulatory proteins were involved in multiple cellular damage processes, the roles of mA and its regulatory proteins in cadmium-induced pulmonary cell damage remain largely unknown. Our present data indicated that cadmium exposure caused serious damage in bronchial epithelial cells, as evidenced by reduction of cell viability and elevation of oxidative damage and apoptosis. These processes were accompanied by alterations of mA modification and its regulatory proteins (FTO, ALKBH5, YTHDC2).

View Article and Find Full Text PDF

Background: Environmental pollutants, particularly heavy metals, have been frequently connected to male infertility. Cadmium was previously shown to reduce male fertility by causing oxidative stress. Anacyclus pyrethrum is a well-known medicinal plant.

View Article and Find Full Text PDF

Diallyl disulfide prevents cadmium-induced testicular injury by attenuating oxidative stress, apoptosis, and TLR-4/NF-κB and JAK1/STAT3 signaling and upregulating SIRT1 in rats.

J Trace Elem Med Biol

December 2024

Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK; Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt. Electronic address:

Background: Cadmium (Cd) is a heavy metal environmental pollutant that can cause serious health problems. Cd can cause structural changes in the testes and exposure to this heavy metal is associated with the loss of sperms and male infertility. The role of oxidative stress and inflammation in Cd toxicity has been acknowledged.

View Article and Find Full Text PDF

This current study seeks to examine the pre-protective function of Quercetin in Cadmium (Cd)-induced liver damage, along with its modulation of the PI3K/Akt/NF-kappaB signaling pathway. A total of 60 male C57BL/6J mice were randomly assigned to four groups: control (C), quercetin (Q, 100 mg/kg/day), Cd (Cd, 2.5 mg/kg/day), and quercetin and Cd (Q+Cd).

View Article and Find Full Text PDF

Cadmium contamination in aquatic environments poses severe risks to aquatic organisms, particularly fish, where cadmium accumulation in tissues can lead to compromised organ functionality and reproductive issues. The present study aimed to assess the effects of cadmium (Cd) exposure on key biomarkers of oxidative stress, DNA damage, apoptosis, and enzyme activity in the liver and kidney tissues of rainbow trout (Oncorhynchus mykiss). Specifically, the study measured 8-hydroxy-2-deoxyguanosine (8-OHdG) levels, caspase-3 activation, acetylcholinesterase (AChE) activity, and oxidative stress indicators (ONOO, MDA, GSH, SOD, and CAT) following exposure to three Cd concentrations (1, 3, and 5 mg/L) over three time points (24, 48, and 96 h).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!