Background Context: In the quest for clinically functional artificial intervertebral discs (AIDs), multidisciplinary technologies have been employed. Existing solid mobile AIDs essentially consist of the superposition of solid plates and core materials; however, it is thought that an ideal surgical AID technology has not yet been developed. To overcome the limitation of these existing AIDs, we developed a unique flexible AID disc system on the basis of our original biomimetic concept. The AID is composed of a cubic three-dimensional fabric (3DF) with a triaxial fiber alignment, which offers biomimetic long-term dynamic mechanical behavior along with durability.

Purpose: This article substantiates the potential clinical use of the 3DF disc system that quite differs from existing ones.

Study Design: We designed the lumbar and cervical 3DF discs that improved the structural weaknesses caused by the collagenous fiber alignment of biological intervertebral disc. Bioresorbable hydroxyapatite particles were deposited on the surface layer of the 3DF disc to promote new bony ingrowth and to ensure secure binding at the interface of the contacting vertebral bodies. A stand-alone system was devised for surgical reliability in terms of both positioning and fixation, allowing tight press fitting with the vertebral bodies. Bioactive and bioresorbable pins were penetrated through the 3DF disc body and projected from the surface to allow ideal insertion and fixation to the disc space, preserving the precise position during dynamical movement. In vitro endurance of the 3DF disc was examined under long-term alternating stresses, and the in vivo animal tests were conducted in the intervertebral lumbar discs at L5-L6 excised from baboons and replaced with the lumbar 3DF disc.

Methods: The static mechanical endurance was assessed through a creep test. In vitro endurance of the 3DF disc under repetitive stresses including axial compressing, flexion-extension, torsional twisting, and lateral bending were applied to the 3DF disc for a long-term for up to 105 million stresses, which is roughly equivalent to exposure of natural biological movement for more than 50 years. In the animal test, eight baboons were euthanized 6 months postoperatively. To their extracted spines, six pure moments (flexion and extension, left and right lateral bending, and left and right torsion) were applied vertically to the superior end of the specimen and then values of range of motions (ROMs) were calculated. Histological analyses were conducted on 12 reticuloendothelial and systemic tissues.

Results: The 3DF disc retained its biomimetic "J-shaped" stress-strain behavior without generating wear debris for up to 105 million stresses. A 130-N loading for the creep test decreased the height of 0.3mm during 80 to 1,000 hours. In the biomechanical test, ROM values of axial rotation and flexion-extension showed no significant difference from the intact excluding that of lateral bending because the location of each pin to stand alone certainly controlled the bending behavior only. The histological analysis indicated no significant pathologic changes induced by the 3DF disc.

Conclusions: The 3DF disc system is clinically suitable for human disc replacement arthroplasty based on the findings of long-term durability with dynamic motion in vitro and effective animal tests in vivo. This system surely overcomes the limitations of existing solid AIDs, and the clinical potential of the biomimetic 3DF discs has been verified. This new biomaterial technology delivers most of the functions and characteristics required by a clinically available AID if applied correctly by surgeons.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.spinee.2009.10.008DOI Listing

Publication Analysis

Top Keywords

3df disc
32
disc system
16
disc
13
3df
13
lateral bending
12
artificial intervertebral
8
intervertebral disc
8
composed cubic
8
cubic three-dimensional
8
three-dimensional fabric
8

Similar Publications

Biaxial mechanics of 3D fiber deposited ply-laminate scaffolds for soft tissue engineering part II: Finite element analyses.

J Mech Behav Biomed Mater

December 2019

Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Ft Collins, CO, USA. Electronic address:

Tissue engineering (TE) is an emerging intervertebral disc (IVD) repair strategy to alleviate pain and mitigate the functional impairment associated with IVD disease. A prevalent strategy to fabricate annulus fibrosus (AF) repair scaffolds is 3D fiber deposition (3DF) which generates scaffolds with highly tailorable mechanics due to a diverse range of print parameters. An essential element of TE is providing the requisite micromechanical environment for the generation and maintenance of healthy mature tissue.

View Article and Find Full Text PDF

Biaxial mechanics of 3D fiber deposited ply-laminate scaffolds for soft tissue engineering part I: Experimental evaluation.

J Mech Behav Biomed Mater

October 2019

Orthopaedic Bioengineering Research Laboratory, Department of Mechanical Engineering and School of Biomedical Engineering, Colorado State University, Ft Collins, CO, USA. Electronic address:

Tissue engineering strategies require the provision of a micromechanical state of stress that is conducive to the generation and maintenance of healthy mature tissue. Of particular interest, angle-ply biomimetic scaffolds augmented with cellular content have been proposed for annulus fibrosus (AF) engineering in order to repair the intervertebral disc. However, the influence of the inherent variability of fabricated constructs and physiological conditions on overall scaffold mechanics, micromechanical environment within the scaffold, and consequent cellular differentiation is relatively unknown.

View Article and Find Full Text PDF

Background Context: In the quest for clinically functional artificial intervertebral discs (AIDs), multidisciplinary technologies have been employed. Existing solid mobile AIDs essentially consist of the superposition of solid plates and core materials; however, it is thought that an ideal surgical AID technology has not yet been developed. To overcome the limitation of these existing AIDs, we developed a unique flexible AID disc system on the basis of our original biomimetic concept.

View Article and Find Full Text PDF

The in vitro multidirectional flexibility analysis was conducted to investigate the initial biomechanical effect of biomimetic artificial intervertebral disc replacement from either anterior or posterior approach in a cadaveric lumbosacral spine model. Two designs of anterior total and posterior subtotal artificial discs were developed using bioactive three-dimensional fabric and bioresorbable hydroxyapatite/poly-l-lactide material (3DF disc). Both models were designed to obtain the stable interface bonding to vertebral endplates with maximum surface area occupation.

View Article and Find Full Text PDF

Study Design: A new artificial intervertebral disc was developed, and its intrinsic biomechanical properties, bioactivity, and the effectiveness as a total disc replacement were evaluated in vitro and in vivo.

Objectives: To introduce a new artificial intervertebral disc and to evaluate the in vitro mechanical properties, fusion capacity to bone, and segmental biomechanics in the total intervertebral disc replacement using a sheep lumbar spine.

Summary Of Background Data: The loss of biologic fusion at the bone-implant interface and prosthetic failures have been reported in previous artificial discs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!