The extent to which colonizing farmer populations have overwhelmed or "replaced" indigenous forager populations, as opposed to having intermarried with them, has been widely debated. Indigenous-colonist "admixture" is often represented in genetic models as a single parameter that, although parsimonious and simple, is incongruous with the sex-specific nature of mtDNA and Y-chromosome data. To help interpret genetic patterns, we can construct useful null hypotheses about the generalized migration history of females (mtDNA) as opposed to males (Y chromosome), which differ significantly in almost every ethnographically known society. We seek to integrate ethnographic knowledge into models that incorporate new social parameters for predicting geographic patterns in mtDNA and Y-chromosome distributions. We provide an example of a model simulation for the spread of agriculture in which this individual-scale evidence is used to refine the parameters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3378/027.081.0304 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!