Predicting net C balance under future global change scenarios requires a comprehensive understanding of how ecosystem photosynthesis (gross primary production; GPP) and respiration (Re) respond to elevated atmospheric [CO(2)] and altered water availability. We measured net ecosystem exchange of CO(2) (NEE), GPP and Re under ambient and elevated [CO(2)] in a northern mixed-grass prairie (Wyoming, USA) during dry intervals and in response to simulated precipitation pulse events. Elevated [CO(2)] resulted in higher rates of both GPP and Re across the 2006 growing season, and the balance of these two fluxes (NEE) accounted for cumulative growing season C uptake (-14.4 +/- 8.3 g C m(-2)). Despite lower GPP and Re, experimental plots under ambient [CO(2)] had greater cumulative uptake (-36.2 +/- 8.2 g C m(-2)) than plots under elevated [CO(2)]. Non-irrigated control plots received 50% of average precipitation during the drought of 2006, and had near-zero NEE (1.9 +/- 6.4 g C m(-2)) for the growing season. Elevated [CO(2)] extended the magnitude and duration of pulse-related increases in GPP, resulting in a significant [CO(2)] treatment by pulse day interaction, demonstrating the potential for elevated [CO(2)] to increase the capacity of this ecosystem to respond to late-season precipitation. However, stimulation of Re throughout the growing season under elevated [CO(2)] reduced net C uptake compared to plots under ambient [CO(2)]. These results indicate that although elevated [CO(2)] stimulates gross rates of ecosystem C fluxes, it does not necessarily enhance net C uptake, and that C cycle responses in semi-arid grasslands are likely to be more sensitive to changes in precipitation than atmospheric [CO(2)].

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-009-1511-xDOI Listing

Publication Analysis

Top Keywords

elevated [co2]
28
growing season
16
[co2]
12
+/- m-2
12
elevated
9
ecosystem photosynthesis
8
atmospheric [co2]
8
plots ambient
8
ambient [co2]
8
season elevated
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!