Assembly of skeletal muscle cells on a Si-MEMS device and their generative force measurement.

Biomed Microdevices

Toyota Central R&D Labs Inc, 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan.

Published: April 2010

We have fabricated a simple Si-MEMS device consisting of a microcantilever and a base to measure active tension generated by skeletal muscle myotubes derived from murine myoblast cell line C2C12. We have developed a fabrication process for integration of myotubes onto the device. To position myotubes over the gap between the cantilever and the base without damage due to mechanical peeling or the use of an enzymatic reaction, we cultured myotubes on poly-N-isopropylacrylamide (PNIPAAm) as a sacrifice layer. By means of immune staining of alpha-actinin, it was confirmed that a myotube micropatterned onto the device bridged the gap between the cantilever and the base. After 7d differentiation, the myotube was actuated by electrical stimulation. The active tension generated by the myotube was evaluated by measuring the bending of the cantilever using image processing. On twitch stimulation, the myotube on the device contracted and generated active tension in response to the electrical signals. On tetanus tension measurement, approximately 1.0 microN per single myotube was obtained. The device developed here can be used in wide area of in vitro skeletal muscle studies, such as drug screening, physiology, regenerative medicine, etc.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10544-009-9379-4DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
active tension
12
si-mems device
8
tension generated
8
gap cantilever
8
cantilever base
8
myotube device
8
device
6
myotube
5
assembly skeletal
4

Similar Publications

Dynamics of tissue repair regulatory T cells and damage in acute Trypanosoma cruzi infection.

PLoS Pathog

January 2025

Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET). Córdoba, Argentina.

Tissue-repair regulatory T cells (trTregs) comprise a specialized cell subset essential for tissue homeostasis and repair. While well-studied in sterile injury models, their role in infection-induced tissue damage and antimicrobial immunity is less understood. We investigated trTreg dynamics during acute Trypanosoma cruzi infection, marked by extensive tissue damage and strong CD8+ immunity.

View Article and Find Full Text PDF

Image-guided Interventions for Core Muscle Injury and Other Disorders in the Pubic Symphysis.

Radiographics

February 2025

Department of Medical Imaging, The Ottawa Hospital, 501 Smyth Rd, Ottawa, ON, Canada K1H 8L6 (D.V.F., J.L.); Department of Radiology, Radiation Oncology and Medical Physics, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada (D.V.F., J.L.); Ottawa Hospital Research Institute, Ottawa, Ontario, Canada (D.V.F., J.L.); and Department of Radiology, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada (T.M.).

Formerly termed or , core muscle injury (CMI) encompasses abnormality of structures within the so-called core, which is essentially the hip, abdomen, and pubis. Compared with data on image-guided procedures of other joints, information regarding procedures performed to address CMI and other disorders of the pubic symphysis is lacking. These procedures can be daunting given the joint's small size, surrounding critical neurovascular structures, and three-dimensional anatomy.

View Article and Find Full Text PDF

Aerobic exercise prevents renal osteodystrophy via irisin-activated osteoblasts.

JCI Insight

January 2025

Department of Nephrology, Blood Purification Research Center, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.

Renal osteodystrophy is commonly seen in patients with chronic kidney disease (CKD) due to disrupted mineral homeostasis. Given the impaired renal function in these patients, common anti-resorptive agents, including bisphosphonates, must be used with caution or even contraindicated. Therefore, an alternative therapy without renal burden to combat renal osteodystrophy is urgently needed.

View Article and Find Full Text PDF

Interplay between Skeletal Muscle Catabolism and Remodeling of Arteriovenous Fistula via YAP1 Signaling.

J Am Soc Nephrol

January 2025

Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030.

Background: Arteriovenous (AV) fistulas are the preferred access for dialysis but have a high incidence of failure. This study aims to understand the crosstalk between skeletal muscle catabolism and AV fistula maturation failure.

Methods: Skeletal muscle metabolism and AV fistula maturation were evaluated in mice with chronic kidney disease (CKD).

View Article and Find Full Text PDF

Background: Nasal high flow (NHF) has been proposed to sustain high intensity exercise in people with COPD, but we have a poor understanding of its physiological effects in this clinical setting.

Research Question: What is the effect of NHF during exercise on dynamic respiratory muscle function and activation, cardiorespiratory parameters, endurance capacity, dyspnoea and leg fatigue as compared to control intervention.

Study Design And Methods: Randomized single-blind crossover trial including COPD patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!