We have combined Signal Space Separation and beamformers (SSS beamformer). The SSS beamformer was tested by simulation in the presence of simulated brain noise. The SSS beamformer performs at least as well as the conventional beamformer, provided that the expansion order is sufficiently high. For beamformer outputs which depend on power or power difference normalized by the projected noise, the spatial resolution of the SSS beamformer is significantly better than that of the conventional beamformers if the sources are deeper, and about the same as that of the conventional beamformer when the sources are superficial. For beamformer outputs which depend on the ratio of powers, the spatial resolutions of the SSS and conventional beamfomers are the same. The sensor noise covariance matrix in the SSS basis is non-diagonal. The SSS beamformers with diagonalized noise covariance matrix exhibit better spatial resolution than that with non-diagonal noise covariance matrix. The SSS beamformers are computationally more efficient than the conventional beamformers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874054 | PMC |
http://dx.doi.org/10.1007/s10548-009-0120-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!