Aim: To investigate whether HDL(2) can inhibit further oxidative modification of partially oxidized LDL (ox-LDL) by interrupting the chain oxidation reaction after lipid hydroperoxides (LOOH) formation.
Methods: Following incubation of LDL 400 microg protein/mL phosphate-buffered saline with Cu(2+) for 1.75 h (defined as 0 min), incubation was continued after adding HDL(2) 200 microg protein/mL or HDL(2) 800 microg protein/mL to give both ox-LDL+HDL(2) 200 microg protein/mL or ox-LDL+HDL(2) 800 microg protein/mL. As a control, ox-LDL 200 microg protein/mL and native LDL were prepared. Each sample was subjected to agarose gel electrophoresis and the LOOH in each sample was measured.
Results: When the electrophoretic mobility of native LDL was designated 1, the relative electrophoretic mobility (REM) of ox-LDL increased significantly over time. The REMs of ox-LDL+HDL(2) 800 microg protein/mL from 10 min to 9 h were significantly lower than the REM of ox-LDL at the respective times (p<0.01). LOOH of ox-LDL+HDL(2) 800 microg protein/mL at 1, 3, 6 and 9 h was significantly higher than LOOH in ox-LDL at the respective times (p<0.01). The results of ox-LDL+HDL(2) 200 microg protein/mL were almost the same but to a lesser extent than the results of ox-LDL+HDL(2) 800 microg protein/mL.
Conclusion: The present findings suggest that HDL(2) can inhibit further oxidative modification of partially oxidized LDL by interrupting the chain oxidation reaction after LOOH formation in a concentration-dependent manner.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5551/jat.1495 | DOI Listing |
A defined microbial consortium was developed for the degradation of isoprothiolane. Isoprothiolane-biodegradation parameters were optimized using Response Surface Methodology (RSM). Three variables chosen for the study were inoculum concentration (50-1500 microg protein ml(-1)), temperature (25-35 degrees C) and pH (4-8) each at levels -1.
View Article and Find Full Text PDFThe modern influenza virus subtypes H3N2, H5N1, and H1N1 reduced the metabolism of the endothelial cells within the range from 20% to 60% (compared with control). The degree of the activity of the dehydrogenase reduction depended on the dose of virus and time of virus reproduction. HA and NA also actively reduced the metabolism of the cells ranging from 5% to 60%, depending on the concentration of the proteins and time of their impact on cells.
View Article and Find Full Text PDFJ AOAC Int
April 2012
Ghent University, Department of Food Safety and Food Quality, Research Group on Food Chemistry and Human Nutrition, Coupure Links 653 B-9000 Gent, Belgium.
Hazelnuts are widely used nowadays, and can pose a serious threat to allergic consumers due to cross-contamination that may occur during processing. This might lead to the presence of hidden hazelnut in foods. Therefore, reliable tests are needed to detect hazelnut, especially in processed foods.
View Article and Find Full Text PDFJ Dairy Sci
June 2010
Department of Food Science and Technology, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
In vitro studies, animal models, epidemiology, and human intervention studies provide evidence that some lactic acid bacteria can reduce the risk of certain cancers. In this study, heat-killed bacterial cells, genomic DNA, and cell wall of 7 wild Lactobacillus strains isolated from traditional fermented foods in western China were tested in vitro for cytotoxicity on colonic cancer cell line HT-29 by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The heat-killed bacterial cells, genomic DNA, and cell wall of the 7 strains exhibited direct antiproliferative activities against HT-29 cells.
View Article and Find Full Text PDFAtherosclerosis
June 2010
Charité, University-Medicine Berlin, Campus Benjamin Franklin, Department of Cardiology, Berlin, Germany.
Objective: The objective of the current study was to investigate the hypothesis that high-density lipoprotein (HDL) influences adipocyte metabolism and adiponectin expression. Therefore, HDL was increased in vivo via apolipoprotein (apo) A-I gene transfer and in vitro via supplementation of HDL to partly differentiated adipocytes, in the presence or absence of lipopolysaccharide (LPS), known to decrease HDL cholesterol and adiponectin levels in vivo.
Methods And Results: Apo A-I transfer resulted in a significant increase of HDL cholesterol in control and LPS-injected C57BL/6 mice, which was paralleled by an increase in plasma adiponectin levels and adiponectin expression in abdominal fat.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!