Overexpression of RAD51 suppresses recombination defects: a possible mechanism to reverse genomic instability.

Nucleic Acids Res

Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA.

Published: March 2010

RAD51, a key protein in the homologous recombinational DNA repair (HRR) pathway, is the major strand-transferase required for mitotic recombination. An important early step in HRR is the formation of single-stranded DNA (ss-DNA) coated by RPA (a ss-DNA-binding protein). Displacement of RPA by RAD51 is highly regulated and facilitated by a number of different proteins known as the 'recombination mediators'. To assist these recombination mediators, a second group of proteins also is required and we are defining these proteins here as 'recombination co-mediators'. Defects in either recombination mediators or co-mediators, including BRCA1 and BRCA2, lead to impaired HRR that can genetically be complemented for (i.e. suppressed) by overexpression of RAD51. Defects in HRR have long been known to contribute to genomic instability leading to tumor development. Since genomic instability also slows cell growth, precancerous cells presumably require genomic re-stabilization to gain a growth advantage. RAD51 is overexpressed in many tumors, and therefore, we hypothesize that the complementing ability of elevated levels of RAD51 in tumors with initial HRR defects limits genomic instability during carcinogenic progression. Of particular interest, this model may also help explain the high frequency of TP53 mutations in human cancers, since wild-type p53 represses RAD51 expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2831301PMC
http://dx.doi.org/10.1093/nar/gkp1063DOI Listing

Publication Analysis

Top Keywords

genomic instability
16
overexpression rad51
8
proteins 'recombination
8
recombination mediators
8
rad51
6
genomic
5
hrr
5
rad51 suppresses
4
recombination
4
suppresses recombination
4

Similar Publications

Micronutrient-Antioxidant Therapy and Male Fertility Improvement During ART Cycles.

Nutrients

January 2025

ART and Reproductive Biology Laboratory, University Hospital and School of Medicine, Picardie University Jules Verne, CHU Sud, 80000 Amiens, France.

Today, accumulating evidence highlights the impact of oxidative stress (OS) on semen quality. It is considered to be a key factor contributing to the decline in male fertility. OS is detected in 30-80% of men with infertility, highlighting its strong association with impaired reproductive function and with clinical outcomes following the use of assisted reproductive technologies.

View Article and Find Full Text PDF

Androgen-indifferent prostate cancer (AIPC) is increasingly common and particularly lethal. Data describing these tumors are sparse, and AIPC remains a poorly understood malignancy. Utilizing the Oncology Research Information Exchange Network (ORIEN) database, we enriched for tumors with features of AIPC using previously described characteristics.

View Article and Find Full Text PDF

The Impact of the Metabolic Syndrome Severity on the Appearance of Primary and Permanent DNA Damage.

Medicina (Kaunas)

December 2024

Department of Internal Medicine, Division of Endocrinology, University Hospital Centre Zagreb, Croatian Referral Center for Obesity Treatment, Kišpatićeva 12, 10000 Zagreb, Croatia.

The prevalence of metabolic syndrome (MetS) worldwide is rapid and significant on a global scale. A 2022 meta-analysis of data from 28 million individuals revealed a global prevalence of 45.1%, with notably higher rates in the Eastern Mediterranean Region and the Americas, particularly in high-income countries.

View Article and Find Full Text PDF

From Genes to Clinical Practice: Exploring the Genomic Underpinnings of Endometrial Cancer.

Cancers (Basel)

January 2025

SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Research Institute (PACRI), University of Pretoria, Hartfield, Pretoria 0028, South Africa.

Endometrial cancer (EC), a prevalent gynecological malignancy, presents significant challenges due to its genetic complexity and heterogeneity. The genomic landscape of EC is underpinned by genetic alterations, such as mutations in PTEN, PIK3CA, and ARID1A, and chromosomal abnormalities. The identification of molecular subtypes-POLE ultramutated, microsatellite instability (MSI), copy number low, and copy number high-illustrates the diverse genetic profiles within EC and underscores the need for subtype-specific therapeutic strategies.

View Article and Find Full Text PDF

Systemic Mechanisms of Ionic Regulation in Carcinogenesis.

Cancers (Basel)

January 2025

Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada.

Cancer is a complex disease characterized by uncontrolled cell proliferation at various levels, leading to tumor growth and spread. This review focuses on the role of ion homeostasis in cancer progression. It describes a model of ion-mediated regulation in both normal and cancerous cell proliferation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!