Marfan syndrome (MFS) is an autosomal dominant condition with pleiotropic manifestations involving the skeletal, ocular, and cardiovascular systems. The diagnosis is based primarily on clinical involvement of these and other systems, referred to as the Ghent criteria. We have identified three Hispanic families from Mexico with cardiovascular and ocular manifestations due to novel FBN1 mutations but with paucity of skeletal features. The largest family, hMFS001, had a frameshift mutation in exon 24 (3075delC) identified as the cause of aortic disease in the family. Assessment of eight affected adults revealed no major skeletal manifestation of MFS. Family hMFS002 had a missense mutation (R1530C) in exon 37. Four members fulfilled the criteria for ocular and cardiovascular phenotype but lacked skeletal manifestations. Family hMFS003 had two consecutive missense FBN1 mutations (C515W and R516G) in exon 12. Eight members fulfilled the ocular criteria for MFS and two members had major cardiovascular manifestations, however none of them met criteria for skeletal system. These data suggest that individuals of Hispanic descent with FBN1 mutations may not manifest skeletal features of the MFS to the same extent as Caucasians. We recommend that echocardiogram, ocular examination and FBN1 molecular testing be considered for any patients with possible MFS even in the absence of skeletal features, including Hispanic patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4354948 | PMC |
http://dx.doi.org/10.1016/j.ejmg.2009.11.001 | DOI Listing |
Zhonghua Yi Xue Yi Chuan Xue Za Zhi
January 2025
Department of Laboratory, Taizhou Hospital of Zhejiang Province, Taizhou, Zhejiang 318050, China.
Objective: To determine the types of genetic variants in six Chinese pedigrees affected with Marfan syndrome (MFS) and analyze their clinical characteristics and molecular pathogenesis.
Methods: Six MFS pedigrees presented at the Taizhou Enze Medical Center (Group) between 2017 and 2022 were selected as the study subjects. Clinical data of pedigrees were retrospectively analyzed.
Sci Rep
January 2025
Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
Congenital anterior segment anomalies are disorders that affect the development of the eye and cause severe visual impairment. The molecular basis of congenital anterior segment anomalies is not well known. In this study, genome sequencing was performed on 27 families from diverse ethnicities with congenital anterior segment anomalies and 11 variants were identified, most of which were novel and family specific.
View Article and Find Full Text PDFMol Genet Genomics
December 2024
Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China.
Given the high morbidity, mortality, and hereditary risk of cardiovascular diseases (CVDs), their prevention and control have garnered widespread attention and remain central to clinical research. This study aims to assess the feasibility and necessity of haplotyping-based preimplantation genetic testing for the prevention of inherited CVD. A total of 15 preimplantation genetic testing for monogenic defect (PGT-M) cycles were performed in 12 CVD families from January 2016 to July 2022.
View Article and Find Full Text PDFJACC Case Rep
December 2024
Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.
Hereditary thoracic aortic disease (HTAD) is a rare heritable condition with several subtypes, including Marfan syndrome (MFS), vascular Ehlers-Danlos syndrome, and Loeys-Dietz syndrome (LDS). Although MFS is the most common type of HTAD caused by mutations in , differentiation from other conditions such as LDS is crucial due to the varying clinical courses. We report the case of a family history of early-onset ascending aortic dissection initially diagnosed as MFS based on a pathogenic variant of .
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA.
Marfan syndrome (MFS) is a systemic connective tissue disorder stemming from mutations in the gene encoding Fibrillin-1 (Fbn1), a key extracellular matrix glycoprotein. This condition manifests with various clinical features, the most critical of which is the formation of aortic root aneurysms. Reduced nitric oxide (NO) production due to diminished endothelial nitric oxide synthase (eNOS) activity has been linked to MFS aortic aneurysm pathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!