C(2)-ceramide (C(2)-cer) and binding of the CD95/APO-1/FAS (aCD95) receptor are acknowledged inducers of apoptosis. In spite of that, their effects on the endoplasmic reticulum (ER) and mitochondria during early phases of apoptotic onset are poorly characterized. Here, by employing various approaches, we followed structural and functional modifications of these organelles at the beginning of cellular demise. In detail, we observed that C(2)-cer, but not CD95 activation, markedly modifies the morphology of the ER and promotes Ca(2+) release. Accordingly, mitochondria of C(2)-cer-treated, but not of CD95-stimulated, cells are fragmented, show reduced Ca(2+) uptake, and collapsed membrane potential (DeltaPsi(m)). Most notably, C(2)-cer-mediated morphological aberrations of the ER are prevented neither by the pan-caspase inhibitor Z-VADfmk nor by the cell cytoskeleton dissembler cytochalasin-D, while on the contrary they are reduced by incubation in the presence of the intracellular Ca(2+) chelator 1,2-bis(O-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). We conclude that initiation of apoptosis via the intrinsic (i.e. C(2)-cer mediated) pathway causes an early structural and functional alteration of both ER and mitochondria, thus underlying a final "non return" point in the apoptotic pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2009.11.101 | DOI Listing |
Purpose: In vitro, oocyte development is susceptible to oxidative stress, which leads to endoplasmic reticulum (ER) stress. This study investigated whether the antioxidant melatonin attenuates ER stress and maintains oocyte-cumulus cell communication during the in vitro growth (IVG) of bovine oocytes.
Methods: Oocyte-granulosa cell complexes (OGCs) were harvested from slaughterhouse-derived ovaries and grown in vitro for 5 d at 38.
World J Gastroenterol
January 2025
State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830000, Xinjiang Uyghur Autonomous Region, China.
Background: polysaccharides (BSP) have antioxidant, immune regulation, and anti-fibrotic activities. However, the therapeutic effect and mechanisms underlying the action of BSP in metabolic dysfunction-associated steatotic liver disease (MASLD) have not been fully understood.
Aim: To investigate the therapeutic effects and mechanisms of BSP on MASLD by centering on the hepatocyte nuclear factor kappa B p65 (RelA)/hepatocyte nuclear factor-1 alpha (HNF1α) signaling.
Diabetol Int
January 2025
Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan.
Unlabelled: Endoplasmic reticulum (ER) stress due to obesity or systemic insulin resistance is an important pathogenic factor that could lead to pancreatic β-cell failure. We have previously reported that CCAAT/enhancer-binding protein β (C/EBPβ) is highly induced by ER stress in pancreatic β cells. Moreover, its accumulation hampers the response of these cells to ER stress by inhibiting the induction of the molecular chaperone 78 kDa glucose-regulated protein (GRP78).
View Article and Find Full Text PDFDecades after their initial observation in prion-infected brain tissues, the identities of virus-like dense particles, varicose tubules, and oval bodies containing parallel bands and fibrils have remained elusive. Our recent work revealed that a phenotype of dilation of the endoplasmic reticulum (ER), most notable for the perinuclear space (PNS), contributes to spongiform degeneration. To assess the significance of this phenotype for the etiology of prion diseases, we explored whether it can be functionally linked to other neuropathological hallmarks observed in these diseases, as this would indicate it to be a central event.
View Article and Find Full Text PDFChemistry
January 2025
Kobe University, Department of Chemical Science & Engineering, 1-1 Rokkodaicho, Nada-ku, 657-8501, Kobe, JAPAN.
Organelle targeting is a useful approach in drug development for cancer therapy. Peptide amphiphiles are good candidates for targeting specific organelles because they can be engineered into a wide range of molecular structures, enabling customization for specific functional needs. We have developed a peptide amphiphile, C16-(EY)3, that can respond to tyrosine kinase activity and undergo phosphorylation inside cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!