Modulation of sclerostin expression by mechanical loading and bone morphogenetic proteins in osteogenic cells.

Biorheology

Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California at Davis, Sacramento, CA, USA.

Published: February 2010

The anabolic effect of dynamic mechanical loading on skeletal architecture has been repeatedly demonstrated, but the cellular and molecular events occurring between load and ultimate bone formation remain obscure. The discovery of sclerostin, an antagonist of Wnt/Lrp5 signaling, and the sclerosing bone dysplasias that result from its mutation suggest its pivotal role in modulating bone formation. We examined expression of Sost mRNA across a variety of clonal cell lines spanning the osteogenic phenotype from immature osteoblast to mature osteocyte. No sclerostin expression was detected in immature MC3T3-E1 osteoblasts and, surprisingly, mature MLO-Y4 osteocytes, whereas immature MLO-A5 osteocytic cells expressed very low levels of Sost. Highest expression was observed in mature UMR 106.01 osteoblasts. We examined the influence of bone morphogenetic proteins on Sost expression. Treatment with BMP-2, -4 or -6 was without effect on Sost in mature MLO-Y4 osteocytes but elicited a robust increase in Sost expression in immature MLO-A5 osteocytes. Oscillatory fluid flow applied to mature UMR 106.01 osteoblasts transiently decreased expression of sclerostin at both the mRNA and protein level. Overall, our results indicate that BMP treatment and in vitro mechanical loading demonstrate opposite effects upon sclerostin expression.

Download full-text PDF

Source
http://dx.doi.org/10.3233/BIR-2009-0550DOI Listing

Publication Analysis

Top Keywords

sclerostin expression
12
mechanical loading
12
expression
8
bone morphogenetic
8
morphogenetic proteins
8
bone formation
8
mature mlo-y4
8
mlo-y4 osteocytes
8
immature mlo-a5
8
mature umr
8

Similar Publications

Objective: To elucidate the mechanisms underlying diabetic osteoporosis, we conducted a comprehensive histological examination of the femora of Spontaneously Diabetic Torii-Lepr (SDT-fa/fa) rats, an established model of obesity-related type 2 diabetes.

Materials And Methods: Femora from 12 30-week-old male SDT-fa/fa rats and age-matched Sprague-Dawley (SD) rats (controls) were used for detailed histochemical analyses, including tartrate-resistant acid phosphatase (TRAP), cathepsin K, alkaline phosphatase (ALP), phosphoethanolamine/ phosphocholine phosphatase 1 (PHOSPHO1), dentin matrix protein (DMP)-1, matrix extracellular phosphoglycoprotein (MEPE), sclerostin, osteocalcin staining, silver impregnation, von Kossa staining, and micro-computed tomography (CT).

Results: Micro-CT and hematoxylin-eosin staining demonstrated significantly reduced trabecular bone volume in the femoral metaphyses of SDT-fa/fa rats.

View Article and Find Full Text PDF

This study explores how select microRNAs (miRNAs) influence bone structure in humans and in transgenic mice. In trabecular bone biopsies from 84 postmenopausal women (healthy, osteopenic, and osteoporotic), we demonstrate that (deleted in lymphocytic leukemia 2)-encoded is strongly positively associated with bone mineral density (BMD) at different skeletal sites. In bone transcriptome analyses, levels correlated positively with the osteocyte characteristic transcripts (encoding sclerostin) and (Matrix Extracellular Phosphoglycoprotein), while the related showed a negative association with BMD and osteoblast markers.

View Article and Find Full Text PDF

The Bone-Vascular Axis: A Key Player in Chronic Kidney Disease Associated Vascular Calcification.

Kidney Dis (Basel)

December 2024

Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China.

Background: The bone-vascular axis plays a key role in the pathogenesis of vascular calcification (VC) in patients with chronic kidney disease (CKD). Understanding and managing the role of the bone-vascular axis in CKD-mineral and bone disorder (CKD-MBD) is critical for preventing and treating associated complications, including osteoporosis, arterial calcification, and cardiovascular diseases. This study aimed to comprehensively summarize the role of bone metabolism markers in uremic VC.

View Article and Find Full Text PDF

The pivotal role of the Hes1/Piezo1 pathway in the pathophysiology of glucocorticoid-induced osteoporosis.

JCI Insight

December 2024

Department of Musculoskeletal Regenerative Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.

Glucocorticoid-induced osteoporosis (GIOP) lacks fully effective treatments. This study investigated the role of Piezo1, a mechanosensitive ion channel component 1, in GIOP. We found reduced Piezo1 expression in cortical bone osteocytes from patients with GIOP and a GIOP mouse model.

View Article and Find Full Text PDF

Primary Osteoporosis Induced by Androgen and Estrogen Deficiency: The Molecular and Cellular Perspective on Pathophysiological Mechanisms and Treatments.

Int J Mol Sci

November 2024

Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, New Taipei City 231, Taiwan.

Primary osteoporosis is closely linked to hormone deficiency, which disrupts the balance of bone remodeling. It affects postmenopausal women but also significantly impacts older men. Estrogen can promote the production of osteoprotegerin, a decoy receptor for RANKL, thereby preventing RANKL from activating osteoclasts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!