[Amphibian skin secretions as a new source of antibiotics and biologically active substances].

Postepy Hig Med Dosw (Online)

Katedra i Zakład Biochemii Lekarskiej, Akademia Medyczna we Wrocławiu, 50-368 Wrocław.

Published: November 2009

So far, the main sources of biologically active substances used in medicine have been plants, molds, and propolis. The obtained compounds have either therapeutic features or require additional modification. They are sometimes combined with other pharmacological substances to intensify their therapeutic effect. However, the effectiveness of many drugs has been rapidly decreasing.The overuse of antibiotics in the treatment and prophylaxis of human infections (especially in hospitals) as well as their widespread and often unjustified use in the treatment and prophylaxis of farm animal illnesses contribute to the development of a variety of resistance mechanisms by microorganisms. Because of the increasing ineffectiveness of antibiotics used so far and difficulties in obtaining new drugs, it is necessary to find new sources of these compounds, for example in animal organisms. Research has demonstrated that amphibian skin secretions are rich in a variety of active substances which have strong pharmacological properties. In these compounds we can distinguish, for example, toxins, antimicrobial peptides, opioid peptides, steroids, and alkaloids.These compounds show cytotoxic, antimicrobial, analgesic, anti-inflammatory, and even antiviral activities (including anti-HIV). These substances can be used in cell receptor studies and in transmembrane ion transport analysis. Because these compounds are secreted by skin glands,they can be easy obtained without injuring these animals. It is probable that amphibian skin constitutes a potential source of modern drugs.

Download full-text PDF

Source

Publication Analysis

Top Keywords

skin secretions
8
biologically active
8
active substances
8
treatment prophylaxis
8
amphibian skin
8
compounds
5
[amphibian skin
4
secretions source
4
source antibiotics
4
antibiotics biologically
4

Similar Publications

Atopic dermatitis (AD) is a multifaceted inflammatory skin condition characterized by the involvement of various cell types, such as keratinocytes, macrophages, neutrophils, and mast cells. Research indicates that flavonoids possess anti-inflammatory properties that may be beneficial in the management of AD. However, the investigation of the glycoside forms for anti-AD therapy is limited.

View Article and Find Full Text PDF

Background: Post-inflammatory hyperpigmentation (PIH) is a common cosmetic concern, often leading to significant psychological distress for the patients. With the widespread application of lasers including ablative fractional resurfacing (AFR) with a 10,600 nm CO laser, PIH caused by lasers is becoming increasingly common. But due to the absence of an appropriate animal research model, our understanding of pathophysiological mechanisms and preventive strategies for PIH remains limited.

View Article and Find Full Text PDF

The clinical profile and outcomes of children with chikungunya infection differ from those observed in adults. As there is a paucity of data on chikungunya infection in children, this study aimed to find the clinical course, complications, and mortality rates of chikungunya infection in children. This was a combined retrospective and prospective observational study.

View Article and Find Full Text PDF

Background: Systemic sclerosis (SSc) is a rare connective tissue disease, frequently affecting the skin, lungs, and pulmonary vasculature. Approximately 30-50% of SSc patients develop interstitial lung disease (SSc-ILD), with 30-35% of related deaths attributed to it. Even though men are less likely to develop systemic sclerosis, they have a higher incidence of SSc-ILD than women, and they tend to develop it at a younger age with a higher mortality rate.

View Article and Find Full Text PDF

This study was designed to assess the effect of brentuximab vedotin on several breast cancer cell lines in terms of promoting apoptosis and managing cancer progression. Additionally, the study investigated the potential of repurposing this drug for new therapeutic reasons, beyond its original indications. The study evaluates the cytotoxic effects of Brentuximab vedotin across five cell lines: normal human skin fibroblasts (HSF), three breast cancer cell lines (MCF-7, MDA-MB-231, and T-47D), and histiocytic lymphoma (U-937).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!