The adipose-derived hormone, leptin, was discovered over 10 years ago, but only now are we unmasking its downstream pathways which lead to reduced energy intake (feeding) and increased energy expenditure (thermogenesis). Recent transgenic models have challenged the long-standing supposition that the hypothalamic arcuate nucleus (Arc) is omnipotent in the central response to leptin, and research focus is beginning to shift to examine roles of extra-arcuate sites. Dhillon et al. (2006) demonstrated that targeted knock out of the signaling form of the leptin receptor (lepr-B) in steroidogenic factor 1 (SF-1) cells of the hypothalamic ventromedial nucleus (VMN) produces obesity of a similar magnitude to the pro-opiomelanocortin (POMC)-driven lepr-B deleted mouse, via a functionally distinct mechanism. These findings reveal that SF-1 cells of the VMN could be equally as important as POMC cells in mediating leptin's anti-obesity effects. However, the identification of molecular and cellular correlates of this relationship remains tantalizingly unknown. Here, we have shown that mRNA expression of the VMN-expressed neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is regulated according to energy status and that it exerts catabolic effects when administered centrally to mice. Furthermore, we have shown that SF-1 and PACAP mRNAs are colocalized in the VMN, and that leptin signaling via lepr-B is required for normal PACAP expression in these cells. Finally, blocking endogenous central PACAP signaling with the antagonist PACAP(6-38) markedly attenuates leptin-induced hypophagia and hyperthermia in vivo. Thus, it appears that PACAP is an important mediator of central leptin effects on energy balance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6666015PMC
http://dx.doi.org/10.1523/JNEUROSCI.1526-09.2009DOI Listing

Publication Analysis

Top Keywords

hypothalamic ventromedial
8
ventromedial nucleus
8
central leptin
8
leptin signaling
8
sf-1 cells
8
pacap
6
leptin
6
pacap neurons
4
neurons hypothalamic
4
nucleus targets
4

Similar Publications

An intra-brainstem circuitry for pain-induced inhibition of itch.

Neuroscience

January 2025

Center for Neuroscience, Indian Institute of Science, Bengaluru 560012, India. Electronic address:

Pain and itch are unpleasant and distinct sensations that give rise to behaviors such as reflexive withdrawal and scratching in humans and mice. Interestingly, it has been observed that pain modulate itch through the neural circuits housed in the brain and spinal cord. However, we are yet to fully understand the identities of, and mechanisms by which specific neural circuits mediate pain-induced modulation of itch.

View Article and Find Full Text PDF

Repeated social stress increases posterior medial amygdala neuronal activity in stress-susceptible adult male rats.

J Neurophysiol

January 2025

Department of Foundational Sciences and Humanities, Discipline of Cellular & Molecular Pharmacology, Rosalind Franklin University, North Chicago, IL, USA, 60064.

The medial amygdala (MeA) is activated by social stimuli and manipulations of the MeA disrupt a wide range of social behaviors. Social stress can shift social behaviors and may accomplish this partly via effects on the MeA. However, very little is known about the effects of social stress on the electrophysiological activity of MeA neurons.

View Article and Find Full Text PDF

Aggression is ubiquitous among social species and can function to maintain social dominance hierarchies. The African cichlid fish Astatotilapia burtoni is an ideal study species for studying aggression due to their dominance hierarchy and robust behavioral repertoire. To further understand the potential sex differences in aggression in this species, we characterized aggression in male and female A.

View Article and Find Full Text PDF

SF1-specific deletion of the energy sensor AMPKγ2 induces obesity.

Mol Metab

December 2024

Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Santiago de Compostela, 15706, Spain. Electronic address:

Objective: AMP-activated protein kinase (AMPK) is a heterotrimer complex consisting of a catalytic α subunit (α1, α2) with a serine/threonine kinase domain, and two regulatory subunits, β (β1, β2) and γ (γ1, γ2, γ3), encoded by different genes. In the hypothalamus, AMPK plays a crucial role in regulating energy balance, including feeding, energy expenditure, peripheral glucose and lipid metabolism. However, most research on hypothalamic AMPK has concentrated on the catalytic subunits AMPKα1 and AMPKα2, with little focus on the regulatory subunits.

View Article and Find Full Text PDF

Background: High-intensity interval training (HIT) does not burn fat during exercise. However, it significantly reduces visceral adipose after long-term training. The underlying mechanism may be related to the elevation of fat consumption during the post-exercise recovery period, which is regulated by the hypothalamus-adipose axis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!