Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent and widespread calcium-mobilizing messenger, the properties of which have been most extensively described in sea urchin eggs. The molecular basis for calcium release by NAADP, however, is not clear and subject to controversy. Recent studies have provided evidence that members of the two-pore channel (TPC) family in mammals are the long sought after target channels for NAADP. Here, we show that the TPC3 gene, which has yet to be functionally characterized, is present throughout the deuterostome lineage but is a pseudogene in humans and other primates. We report the molecular cloning of the complete ancestral TPC gene family from the sea urchin and demonstrate that all three isoforms localize to acidic organelles to mediate NAADP-dependent calcium release. Our data highlight the functional divergence of this novel gene family during deuterostome evolution and provide further evidence that NAADP mediates calcium release from acidic stores through activation of TPCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2823445PMC
http://dx.doi.org/10.1074/jbc.C109.081943DOI Listing

Publication Analysis

Top Keywords

calcium release
16
nicotinic acid
8
acid adenine
8
adenine dinucleotide
8
release acidic
8
acidic organelles
8
sea urchin
8
gene family
8
ancestral deuterostome
4
family
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!