Mutants of Anabaena sp. PCC 7120 lacking alr1690 and alpha-furA antisense RNA show a pleiotropic phenotype and altered photosynthetic machinery.

J Plant Physiol

Department of Biochemistry and Molecular and Cell Biology and Institute for Biocomputation and Physics of Complex Systems (BiFi), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain.

Published: April 2010

Fur proteins are global regulators present in all prokaryotes. In Anabaena sp. PCC 7120 FurA controls iron uptake and modulates an important set of genes related primarily to photosynthesis, nitrogen metabolism and oxidative stress defense. Expression of furA is tuned by the cis-acting antisense alpha-furA RNA that is co-transcribed with the outer-membrane protein Alr1690. Disruption of the alpha-furA-alr1690 message produces the iron-deficient JAH3 mutant that lacks Alr1690 and shows enhanced expression of FurA. JAH3 cells present severe structural disorders related to the number, organization and density of photosynthetic membranes. Quantitative analysis of the fluorescence induction shows that the mutation affects the J-I and I-P phases and causes important alterations in the photosynthetic apparatus, leading to lower photosynthetic performance indexes. These results reveal that expression of the alpha-furA-alr1690 message is required for maintenance of a proper thylakoid arrangement, efficient regulation of iron uptake and optimal yield of the photosynthetic machinery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2009.10.009DOI Listing

Publication Analysis

Top Keywords

anabaena pcc
8
pcc 7120
8
photosynthetic machinery
8
iron uptake
8
expression fura
8
alpha-fura-alr1690 message
8
photosynthetic
5
mutants anabaena
4
7120 lacking
4
lacking alr1690
4

Similar Publications

Enhanced cyanophycin accumulation in diazotrophic cyanobacterium through random mutagenesis and tailored selection under varying phosphorus availability.

Bioresour Technol

December 2024

Microalgal Biotechnology Laboratory, The French Associates Institute for Agriculture and Biotechnology of Drylands, The J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel. Electronic address:

This study explored a sustainable alternative to the Haber-Bosch process by enhancing the production of the nitrogen-rich polymer cyanophycin (CGP) in the diazotrophic cyanobacterium Nostoc sp. PCC 7120. Applying UV-mutagenesis followed by canavanine selection, we isolate an initial mutant with enhanced CGP accumulation.

View Article and Find Full Text PDF

All1750 of Anabaena PCC 7120 encodes a novel NAD-dependent amine dehydrogenase having broad substrate range.

Int J Biol Macromol

December 2024

Molecular Biology Section, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India. Electronic address:

Native amine dehydrogenases (AmDHs) are rare and typically have narrow substrate specificity and low processivity. Therefore, they are often modified using protein engineering for industrial and pharmaceutical applications. This study presents identification and characterization of a novel native amine dehydrogenase (AmDH) encoding WD40 protein (All1750) from Anabaena PCC 7120.

View Article and Find Full Text PDF

ThyD Is a Thylakoid Membrane Protein Influencing Cell Division and Acclimation to High Light in the Multicellular Cyanobacterium Anabaena sp. Strain PCC 7120.

Mol Microbiol

January 2025

Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC and Universidad de Sevilla, Seville, Spain.

Cyanobacteria developed oxygenic photosynthesis and represent the phylogenetic ancestors of chloroplasts. The model strain Anabaena sp. strain PCC 7120 grows as filaments of communicating cells and can form heterocysts, cells specialized for N fixation.

View Article and Find Full Text PDF

The LysR-type transcriptional factor PacR controls heterocyst differentiation and C/N metabolism in the cyanobacterium Anabaena PCC 7120.

Microbiol Res

January 2025

State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, Hubei, China; Hubei Hongshan Laboratory, Wuhan 430070, Hubei, China. Electronic address:

PacR (All3953) has previously been identified as a global transcriptional regulator of carbon assimilation in cyanobacteria. In the facultative diazotrophic and filamentous cyanobacterium Anabaena PCC 7120 (Anabaena), inactivation of pacR has been shown to affect cell growth under various conditions. Nitrogen fixation in Anabaena occurs in heterocysts, cells differentiated semiregularly along the filaments following deprivation of combined nitrogen such as nitrate or ammonium.

View Article and Find Full Text PDF

In situ resource utilization systems based on cyanobacteria could support the sustainability of crewed missions to Mars. However, their resource-efficiency will depend on the extent to which gases from the Martian atmosphere must be processed to support cyanobacterial growth. The main purpose of the present work is to help assess this extent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!