A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Monitoring bacterial indicators and pathogens in cattle feedlot waste by real-time PCR. | LitMetric

Monitoring bacterial indicators and pathogens in cattle feedlot waste by real-time PCR.

Water Res

School of Civil and Environmental Engineering, UNSW Water Research Centre, University of New South Wales, NSW 2052, Australia.

Published: March 2010

Quantitative microbial health risk assessment requires accurate enumeration of pathogens in hazard-containing matrices as part of the risk characterization process. As part of a risk management-oriented study of cattle feedlot waste contaminants, we investigated the utility of quantitative real-time PCR (qPCR) for surveying the microbial constituents of different faecal wastes. The abundance of Escherichia coli and enterococci were first estimated in five cattle feedlot waste types from five localities. Bacteria were quantified using two culture methods and compared to the number of genome copies detected by qPCR targeted at E. coli and Enterococcus faecalis. Bacterial numbers detected in the different wastes (fresh faeces, pen manure, aged manure, composted manure, carcass manure compost) ranged from 10-(7) to 10(2)g(-1) (dry weight). Both indicator groups were detected by qPCR with a comparable sensitivity to culture methods across this range. qPCR measurements of E. coli and E. faecalis correlated well with MPN and spread plate data. As a second comparison, we inoculated green fluorescent protein (GFP) labeled reference bacteria into manure samples. GFP labeled E. coli and Listeria monocytogenes were detected by qPCR in concentrations corresponding to between 18% and 71% of the initial bacterial numbers, compared to only 2.5-16% by plating. Our results supported our selection of qPCR as a fast, accurate and reliable system for surveying the presence and abundance of pathogens in cattle waste.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2009.11.016DOI Listing

Publication Analysis

Top Keywords

cattle feedlot
12
feedlot waste
12
detected qpcr
12
pathogens cattle
8
real-time pcr
8
culture methods
8
bacterial numbers
8
gfp labeled
8
qpcr
6
manure
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!