Hereditary spastic paraplegia (HSP) is a group of genetically heterogenous neurodegenerative disorders characterized by progressive spasticity and weakness of both lower extremities. Herein, we report a novel splicing mutation (c.870+3A>G) in SPG4 in a Korean family with an autosomal dominant-inherited pure HSP. The mutation is located in intron 5, and results in a deletion of the 188bp-sized exon 5. It is likely that the exon 5 deletion leads to spastin dysfunction and cause the typical symptoms and signs of patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jns.2009.10.016DOI Listing

Publication Analysis

Top Keywords

novel splicing
8
splicing mutation
8
mutation c870+3a>g
8
c870+3a>g spg4
8
spg4 korean
8
korean family
8
hereditary spastic
8
spastic paraplegia
8
family hereditary
4
paraplegia hereditary
4

Similar Publications

Dual targeting PPARα and NPC1L1 metabolic vulnerabilities blocks tumorigenesis.

Cancer Lett

January 2025

Advanced Medical Research Institute, Qilu College of Medicine, Shandong University, Jinan, 250012, China. Electronic address:

Dysregulated lipid metabolism is linked to tumor progression. In this study, we identified Niemann-Pick C1-like 1 (NPC1L1) as a downstream effector of PKM2. In breast cancer cells, PKM2 knockout (KO) enhanced NPC1L1 expression while downregulating peroxisome proliferator-activated receptor α (PPARα) signaling pathway.

View Article and Find Full Text PDF

The Hao-Fountain syndrome protein USP7 regulates neuronal connectivity in the brain via a novel p53-independent ubiquitin signaling pathway.

Cell Rep

January 2025

Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:

Mutation or deletion of the deubiquitinase USP7 causes Hao-Fountain syndrome (HAFOUS), which is characterized by speech delay, intellectual disability, and aggressive behavior and highlights important unknown roles of USP7 in the nervous system. Here, we conditionally delete USP7 in glutamatergic neurons in the mouse forebrain, triggering disease-relevant phenotypes, including sensorimotor deficits, impaired cognition, and aggressive behavior. Although USP7 deletion induces p53-dependent neuronal apoptosis, most behavioral abnormalities in USP7 conditional knockout mice persist following p53 loss.

View Article and Find Full Text PDF

Host RNA-Binding Proteins as Regulators of HIV-1 Replication.

Viruses

December 2024

Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile.

RNA-binding proteins (RBPs) are cellular factors involved in every step of RNA metabolism. During HIV-1 infection, these proteins are key players in the fine-tuning of viral and host cellular and molecular pathways, including (but not limited to) viral entry, transcription, splicing, RNA modification, translation, decay, assembly, and packaging, as well as the modulation of the antiviral response. Targeted studies have been of paramount importance in identifying and understanding the role of RNA-binding proteins that bind to HIV-1 RNAs.

View Article and Find Full Text PDF

A Series of Novel Alleles of Modulating Heading and Salt Tolerance in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China.

Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.

View Article and Find Full Text PDF

Conditional Split Inteins: Adaptable Tools for Programming Protein Functions.

Int J Mol Sci

January 2025

School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology and Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK.

Split inteins are biological mechanisms for the operation of the spatiotemporal control of protein activities. They function through protein -splicing, in which their N- and C-terminal fragments are expressed contiguously with two protein halves. The subsequent self-excision upon recognition of the complimentary fragment yields a mature, complete, and functional protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!