Combined quantum mechanical and molecular mechanical (QM/MM) simulations of dopa decarboxylase have been carried out to elucidate the factors that contribute to the tautomeric equilibrium of the intramolecular proton transfer in the external PLP-L-dopa Schiff base. The presence of a carboxylate anion on the alpha-carbon of the Schiff base stabilizes the zwitterions and shifts the equilibrium in favor of the oxoenamine tautomer (protonated Schiff base). Moreover, protonation of the PLP pyridine nitrogen further drives the equilibrium toward the oxoenamine direction. On the other hand, solvent effects favor the hydroxyimine configuration, although the equilibrium favors the oxoenamine isomer with a methyl group as the substituent on the imino nitrogen. In dopa decarboxylase, the hydroxyimine form of the PLP(H+)-L-dopa Schiff base is predicted to be the major isomer with a relative free energy of -1.3 kcal/mol over that of the oxoenamine isomer. Both Asp271 and Lys303 stabilize the hydroxyimine configuration through hydrogen-bonding interactions with the pyridine nitrogen of the PLP and the imino nitrogen of the Schiff base, respectively. Interestingly, Thr246 plays a double role in the intramolecular proton transfer process, in which it initially donates a hydrogen bond to the phenolate oxygen in the oxoenamine configuration and then switches to a hydrogen bond acceptor from the phenolic hydroxyl group in the hydroxyimine tautomer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2827857 | PMC |
http://dx.doi.org/10.1021/bi901790e | DOI Listing |
Anal Chim Acta
February 2025
Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt. Electronic address:
Background: The current synthetic strategies for carbon dots (CDs) are usually time-consuming, rely on complicated processes, and need high temperatures and energy. Recent studies have successfully synthesized CDs at room temperature. Unfortunately, most CDs synthesized at room temperature are obtained under harsh reaction conditions, prepared using aromatic precursors, or need a long time to generate.
View Article and Find Full Text PDFEur J Pharm Sci
January 2025
Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, PR China. Electronic address:
In the endocrine system, anaplastic thyroid cancer (ATC) is extremely aggressive since it inhibits the majority of medications and treatments. Therefore, there is an immediate demand to identify new treatment approaches or drugs to deal with ATC. Recently, amino acid Schiff base copper complexes have received great attention due to their excellent anti-tumor activity.
View Article and Find Full Text PDFSci Rep
January 2025
Chemistry Department, School of Advanced Sciences, Vellore Institute of Technology-Chennai campus, Chennai, 600127, India.
Nickel complexes are a potential candidate for antibacterial and antifungal activity. A new Ni (II) complex, bis(2-methoxy-6-{[(2-methylpropyl)imino]methyl}phenolato)nickel (II) (2), was synthesised by reacting, bis(3-methoxy-salicylaldehyde)nickel (II) (1) with isobutylamine. It was characterised by single crystal X-ray diffraction (ScXRD), UV-Vis, NMR, IR, mass spectrometry, and thermogravimetry (TG) to study its structure and physico-chemical properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Microbiology, College of Life Science, Key Laboratory for Agriculture Microbiology, Shandong Agricultural University, Tai'an 271018, PR China; School of Pharmacy, the Key Laboratory of Medical Antibacterial Materials of Shandong Province, Binzhou Medical University, Yantai 264003, PR China. Electronic address:
Chronic wounds caused by microbial infection have emerged as a major challenge on patients and medical health system. Bacterial cellulose (BC) characterized by its excellent biocompatibility and porous network, holds promise for addressing complex wound issues. However, lack of inherent antibacterial activity and cross-linking sites in the molecular network of BC have constrained its efficacy in hydrogel design and treatment of bacterial-infected wounds.
View Article and Find Full Text PDFFood Chem
January 2025
College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China. Electronic address:
Herein, we developed multifunctional hydrogels formed between soybean protein (SPI)-gallic acid conjugate and oxidized dextran (ODex) via a Schiff base reaction. The effects of ODex on the morphology, structure, and functional properties of the hydrogels were elucidated. The results showed that the crosslinking modes in the hydrogels include hydrogen bonding, Schiff bases, Michael addition, and π-π stacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!