Influence of amide versus ester linkages on the properties of eight-armed PEG-PLA star block copolymer hydrogels.

Biomacromolecules

Department of Polymer Chemistry and Biomaterials, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

Published: January 2010

Water-soluble eight-armed poly(ethylene glycol)-poly(l-lactide) star block copolymers linked by an amide or ester group between the PEG core and the PLA blocks (PEG-(NHCO)-(PLA)(8) and PEG-(OCO)-(PLA)(8)) were synthesized by the stannous octoate catalyzed ring-opening polymerization of l-lactide using an amine- or hydroxyl-terminated eight-armed star PEG. At concentrations above the critical gel concentration, thermosensitive hydrogels were obtained, showing a reversible single gel-to-sol transition. At similar composition PEG-(NHCO)-(PLA)(8) hydrogels were formed at significantly lower polymer concentrations and had higher storage moduli. Whereas the hydrolytic degradation/dissolution of the PEG-(OCO)-(PLA)(8) takes place by preferential hydrolysis of the ester bond between the PEG and PLA block, the PEG-(NHCO)-(PLA)(8) hydrogels degrade through hydrolysis of ester bonds in the PLA main chain. Because of their relatively good mechanical properties and slow degradation in vitro, PEG-(NHCO)-(PLA)(8) hydrogels are interesting materials for biomedical applications such as controlled drug delivery systems and matrices for tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm901080dDOI Listing

Publication Analysis

Top Keywords

peg-nhco-pla8 hydrogels
12
star block
8
hydrolysis ester
8
hydrogels
5
influence amide
4
amide versus
4
ester
4
versus ester
4
ester linkages
4
linkages properties
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Vanderbilt University Medical Center, Nashville, TN, USA.

Background: We report the case of a 79-year-old woman with Alzheimer's disease who enrolled in a clinical study of lecanemab. After the third, biweekly infusion she suffered a seizure followed by aphasia and progressive encephalopathy. Magnetic resonance imaging revealed multifocal cerebral edema and an increased burden of cerebral microhemorrhages compared to pre-trial imaging.

View Article and Find Full Text PDF

Pharmaceutical giants (e.g., Ashland, Bausch & Lomb, Johnson & Johnson, Medtronic, Neurelis, etc.

View Article and Find Full Text PDF

Purpose Of The Study: The preclinical study aimed to compare the healing of segmental bone defects treated with biodegradable hyaluronic acid and tricalcium phosphate-based hydrogel with the established autologous spongioplasty. Another aim was to evaluate the hydrogel as a scaffold for osteoinductive growth factor of bone morphogenetic protein-2 (BMP-2) and stem cells.

Material And Methods: The study was conducted in an in vivo animal model.

View Article and Find Full Text PDF

The present study aimed to investigate the role of a recombinant protein based on human collagen type I (RCPhC1) as a scaffold in maintaining the human tumor microenvironment within a patient-derived tumor xenograft (PDTX) model. RCPhC1, synthesized under animal component-free conditions, was explored for its potential to support the human-specific stroma associated with tumor growth. PDTX models were established using resected colorectal cancer liver metastasis specimens, and stromal cell populations from humans and mice were compared using three scaffolds: No scaffold (control), Matrigel and recombinant human collagen type I, across two passages.

View Article and Find Full Text PDF

Large bone defects are still a persistent challenge in orthopedics. The availability limitations and associated complications of autologous and allogeneic bone have prompted an increasing reliance on tissue engineering and regenerative medicine. In this study, we developed an injectable scaffold combining an acellular extracellular periosteal matrix hydrogel with poly(d,l-lactate--glycol-acetate) microspheres loaded with the E7 peptide and miR217 (miR217/E7@MP-GEL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!