Acrolein is an alpha,beta-unsaturated aldehyde that is a major environmental pollutant, as well as a product of cellular metabolism. DNA bases react with acrolein to form two regioisomeric exocyclic guanine adducts, namely gamma-hydroxy-propanodeoxyguanosine (gamma-OH-PdG) and its positional isomer alpha-hydroxy-propanodeoxyguanosine (alpha-OH-PdG). The gamma-OH-PdG isomer adopts a ring-opened conformation with minimal structural perturbation of the DNA host duplex. Conversely, the alpha-OH-PdG isomer assumes a ring-closed conformation that significantly disrupts Watson-Crick base-pair alignments within the immediate vicinity of the damaged site. We have employed a combination of calorimetric and spectroscopic techniques to characterize the thermodynamic origins of these lesion-induced structural alterations. Specifically, we have assessed the energetic impact of alpha-OH-PdG centered within an 11-mer duplex by hybridizing the adduct-containing oligonucleotide with its complementary strand harboring a central base N [where N = C or A], yielding a pair of duplexes containing the nascent lesion (alpha-OH-PdG.C) or mismatched adduct (alpha-OH-PdG.A), respectively. Our data reveal that the nascent lesion is highly destabilizing, whereas its mismatched counterpart partially ameliorates alpha-OH-PdG-induced destabilization. Collectively, our data provide energetic characterizations of the driving forces that modulate error-free versus error-prone DNA translesion synthesis. The biological implications of our findings are discussed in terms of energetically probing acrolein-mediated mutagenicity versus adduct-induced genotoxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2891022 | PMC |
http://dx.doi.org/10.1002/bip.21355 | DOI Listing |
Abasic sites are one of the most frequent forms of DNA damage that interfere with DNA replication. However, abasic sites exhibit complex effects because they can be processed into other types of DNA damage. Thus, it remains poorly understood how abasic sites affect replisome progression, which replication-coupled repair pathways they elicit, and whether this is affected by the template strand that is damaged.
View Article and Find Full Text PDFRespiration
December 2024
Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Oncogene
January 2025
Dept. of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
Hypoxia is common in tumors and is associated with cancer progression and drug resistance, driven, at least in part, by genetic instability. Little is known on how hypoxia affects Translesion DNA Synthesis (TLS), in which error-prone DNA polymerases bypass lesions, thereby maintaining DNA continuity at the price of increased mutations. Here we show that under acute hypoxia, PCNA monoubiquitination, a key step in TLS, and expression of error-prone DNA polymerases increased under regulation of the HIF1α transcription factor.
View Article and Find Full Text PDFMol Cell Biochem
October 2024
Center for Cardiovascular Genetic Studies, Institute of Molecular Medicine, The University of Texas Health Science Center, 6770 Bertner Street, Suite C900A, Houston, TX, 77030, USA.
Aging Cell
January 2025
Institute for Fundamental Biomedical Research, BSRC "Alexander Fleming", Vari, Greece.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!