A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics. | LitMetric

Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics.

Appl Biochem Biotechnol

Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, China.

Published: May 2010

Utilizing all forms of sugars derived from lignocellulosic biomass via various pretreatment and hydrolysis process is a primary criterion for selecting a microorganism to produce biofuels and biochemicals. A broad carbon spectra and potential inhibitors such as furan, phenol compounds and weak acids are two major obstacles that limited the application of dilute-acid hydrolysate of lignocellulosics in lactic acid fermentation. Two strains of bacteria isolated from sour cabbage, S3F4 (Lactobacillus brevis) and XS1T3-4 (Lactobacillus plantrum), exhibited the ability to utilize various sugars present in dilute-acid hydrolysate of biomass. The S3F4 strain also showed strong resistance to potential fermentation inhibitors such as ferulic acid and furfural. Fermentation in flasks by this strain resulted in 39.1 g/l of lactic acid from dilute acid hydrolysates of corncobs that had initial total sugar concentration of 56.9 g/l (xylose, 46.4 g/l; glucose, 4.0 g/l; arabinose, 6.5 g/l). The hydrolysate of corncobs was readily utilized by S3F4 without detoxification, and the lactic acid concentration obtained in this study was higher compared to other reports.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-009-8857-8DOI Listing

Publication Analysis

Top Keywords

lactic acid
16
lactobacillus brevis
8
hydrolysate lignocellulosics
8
dilute-acid hydrolysate
8
acid
6
g/l
5
performances lactobacillus
4
brevis producing
4
lactic
4
producing lactic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!