Cytokeratins are intermediate filament proteins found in most epithelial cells including the mammary epithelium. Specific cytokeratin expression has been found to mark different epithelial cell lineages and also to associate with putative mammary stem/progenitor cells. However, a comparative analysis of the expression of cytokaratins during embryonic and postnatal mammary development is currently lacking. Moreover, it is not clear whether the different classes of putative mammary stem/progenitor cells exist during embryonic development. Here, we use double/triple-label immunofluorescence and immunohistochemistry to systematically compare the expression of cytokeratin 5 (K5), cytokeratin 6 (K6), cytokeratin 8 (K8), cytokeratin 14 (K14) and cytokeratin 19 (K19) in embryonic and early postnatal mouse mammary glands. We show that K6(+) and K8(+)/K14(+) putative mammary progenitor cells arise during embryogenesis with distinct temporal and spatial distributions. Moreover, we describe a transient disconnection of the expression of K5 and K14, two cytokeratins that are often co-expressed, during the first postnatal weeks of mammary development. Finally, we report that cytokeratin expression in cultured primary mammary epithelial cells mimics that during the early stages of postnatal mammary development. These studies demonstrate an embryonic origin of putative mammary stem/progenitor cells. Moreover, they provide additional insights into the use of specific cytokeratins as markers of mammary epithelial differentiation, or the use of their promoters to direct gene overexpression or ablation in genetic studies of mouse mammary development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2807942 | PMC |
http://dx.doi.org/10.1007/s00418-009-0662-5 | DOI Listing |
Cancer Res Commun
December 2024
McGill Centre for Translational Research in Cancer, Montreal, Quebec, Canada.
Ductal carcinoma in situ (DCIS) is the most common type (80%) of non-invasive breast lesions in women. The lack of validated prognostic markers, limited patient numbers, and variable tissue quality have a significant impact on diagnosis, risk stratification, patient enrolment, and the results of clinical studies. Here, we performed label-free quantitative proteomics on 50 clinical formalin-fixed, paraffin embedded biopsies, validating 22 putative biomarkers from independent genetic studies.
View Article and Find Full Text PDFFront Oncol
December 2024
Directorate of Research and Innovation, Mount Kenya University, Thika, Kenya.
Background: The immune response against tumors relies on distinguishing between self and non-self, the basis of cancer immunotherapy. Neoantigens from somatic mutations are central to many immunotherapeutic strategies and understanding their landscape in breast cancer is crucial for targeted interventions. We aimed to profile neoantigens in Kenyan breast cancer patients using genomic DNA and total RNA from paired tumor and adjacent non-cancerous tissue samples of 23 patients.
View Article and Find Full Text PDFDrugs R D
December 2024
Galapagos SASU, Romainville, France.
Background And Objective: This study provides a physiologically based pharmacokinetic (PBPK) model-based analysis of the potential drug-drug interaction (DDI) between cyclosporin A (CsA), a breast cancer resistance protein transporter (BCRP) inhibitor, and methotrexate (MTX), a putative BCRP substrate.
Methods: PBPK models for CsA and MTX were built using open-source tools and published data for both model building and for model verification and validation. The MTX and CsA PBPK models were evaluated for their application in simulating BCRP-related DDIs.
J Genet Eng Biotechnol
December 2024
Department of Urology, Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, Guangzhou Urology Research Institute, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China. Electronic address:
Triple-negative breast cancer (TNBC) is the most prevalent breast cancer subtype. Its prognosis is poor because there are no effective treatment targets. Despite several attempts, the molecular pathways of TNBC remain unknown, posing a significant clinical barrier in the search for viable targets.
View Article and Find Full Text PDFPurpose: Clinical variant analysis pipelines likely have poor sensitivity to the effects on splicing from variants beyond 10 to 20 bases of exon-intron boundaries. Here, we demonstrate the value of SpliceAI to inform curation of rare variants previously classified as benign/likely benign (B/LB) under current guidelines.
Methods: Exome sequencing data from 576 pediatric cancer patients enrolled in the Texas KidsCanSeq study were filtered for intronic or synonymous variants absent from population databases, predicted to alter splicing via SpliceAI (>0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!