Background: In 2008, the National Comprehensive Cancer Network suggested conducting a KRAS mutations test in metastatic colorectal cancer (mCRC) patients prior to administering therapy that uses anti-epidermal growth factor receptor (EGFR) monoclonal antibody. However, tests of KRAS mutations have been limited when traditional molecular techniques, such as polymerase chain reaction (PCR) combined direct sequencing, are used to obtain and analyze patients' cancer tissues. If the primary tumor or metastatic tissues of patients with mCRC is unavailable, then such analysis will not be feasible. Our laboratory has successfully established a colorimetric membrane array analysis platform that could detect activating KRAS mutations from the peripheral blood of patients with various malignancies.
Methods: The current research aims to improve the above-mentioned technique not only by using chemiluminescence detection to replace color development, but also to add scores weighted according to the relevance of each gene to activating KRAS mutations.
Results: Our results show that the described weighted chemiluminescent membrane array (WCHMA) can detect circulating tumor cells (CTCs) harboring activating KRAS mutations in the peripheral blood in CRC. The sensitivity, specificity, and accuracy were 90.2, 94.9, and 93.5%, respectively, and the detection limitation was three colon tumor cells per millimeter of blood. The current study would significantly improve the detection sensitivity and accuracy over that of our previously designed membrane array method.
Conclusions: These findings also highlight the need to prompt further prospective studies on more cases of CRC to further establish the clinical relevance of activating KRAS mutation detection from peripheral blood in anti- EGFR-based chemotherapy that uses activating KRAS detection chips and the WCHMA analysis method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1245/s10434-009-0831-8 | DOI Listing |
Mol Cancer
January 2025
Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Background And Aims: Oncogenic KRAS mutations are present in approximately 90% of pancreatic ductal adenocarcinoma (PDAC). However, Kras mutation alone is insufficient to transform precancerous cells into metastatic PDAC. This study investigates how KRAS-mutated epithelial cells acquire the capacity to escape senescence or even immune clearance, thereby progressing to advanced PDAC.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Internal Medicine I, Ulm University Hospital, Ulm, Germany
Background: Pancreatic ductal adenocarcinoma (PDAC) is mostly refractory to immunotherapy due to immunosuppression in the tumor microenvironment and cancer cell-intrinsic T cell tolerance mechanisms. PDAC is described as a "cold" tumor type with poor infiltration by T cells and factors leading to intratumoral T cell suppression have thus received less attention. Here, we identify a cancer cell-intrinsic mechanism that contributes to a T cell-resistant phenotype and describes potential combinatorial therapy.
View Article and Find Full Text PDFTheriogenology
January 2025
College of Agriculture and Bioengineering, Heze University, Heze, 274000, China. Electronic address:
Precisely regulated spermatocyte growth, differentiation, and apoptosis are crucial for sustainable male fertility. miR-143 has been demonstrated to regulate gene expression and cell apoptosis in various human cancers. However, the function of mmu-mir-143 (miR-143) in mammalian testes and its underlying mechanism remains unexplored.
View Article and Find Full Text PDFCancer Sci
January 2025
Oncology Innovation Center, Fujita Health University, Toyoake, Aichi, Japan.
Colorectal cancer (CRC) is well characterized in terms of genetic mutations and the mechanisms by which they contribute to carcinogenesis. Mutations in APC, TP53, and KRAS are common in CRC, indicating key roles for these genes in tumor development and progression. However, for certain tumors with low frequencies of these mutations that are defined by tumor location and molecular phenotypes, a carcinogenic mechanism dependent on BRAF mutations has been proposed.
View Article and Find Full Text PDFClin Cancer Res
January 2025
Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.
PURPOSE Oncogenic mutations in KRAS have been identified in > 85% of pancreatic ductal adenocarcinoma (PDAC) cases. G12D, G12V, and G12R are the most frequent variants. Using large clinical and genomic databases, this study characterizes prognostic and molecular differences between KRAS variants, focusing on KRAS G12D and G12R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!