Enhancement of fumaric acid production by Rhizopus oryzae using a two-stage dissolved oxygen control strategy.

Appl Biochem Biotechnol

College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, People's Republic of China.

Published: October 2010

Batch fermentative production of fumaric acid by Rhizopus oryzae ME-F12 was investigated in a 7-l stirred tank fermentor under different dissolved oxygen (DO) concentrations. High fumaric acid yield on glucose (0.56 g/g) was achieved under high DO concentration (80%), but the glucose consumption rate and fumaric acid productivity were rather low (0.91 and 0.51 g/l/h). Fumaric acid productivity was enhanced under low DO concentration (30%), but the fuamric acid yield on glucose decreased to 0.52 g/g. In order to achieve the high fumaric acid yield and productivity simultaneously, a two-stage dissolved oxygen control strategy was proposed, in which the DO concentration was controlled at 80% in the first 18 h and then switched to 30%. This was experimentally proven to be successful. Relatively high fumaric acid production (56.2 g/l), high fumaric acid yield on glucose (0.54 g/g), and high glucose consumption rate (1.3 g/l/h) were achieved by applying this strategy. The productivity (0.7 g/l/h) was improved by 37%, 21%, and 9%, respectively, compared with fermentations in which DO concentrations were kept constant at 80%, 60%, and 30%.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-009-8831-5DOI Listing

Publication Analysis

Top Keywords

fumaric acid
32
high fumaric
16
acid yield
16
dissolved oxygen
12
yield glucose
12
acid
9
acid production
8
rhizopus oryzae
8
two-stage dissolved
8
oxygen control
8

Similar Publications

White clover () is an excellent perennial cold-season ground-cover plant for municipal landscaping and urban greening. It is, therefore, widely distributed and utilized throughout the world. However, poor salt tolerance greatly limits its promotion and application.

View Article and Find Full Text PDF

Asthma has been extensively studied in humans and animals, but the molecular mechanisms underlying asthma in Meishan pigs, a breed with distinct genetic and physiological characteristics, remain elusive. Understanding these mechanisms could provide insights into veterinary medicine and human asthma research. We investigated asthma pathogenesis in Meishan pigs through transcriptomic and metabolomic analyses of blood samples taken during autumn and winter.

View Article and Find Full Text PDF

Members of the genus are the conventional medicinal plants used in the therapeutic management of numerous ailments, especially for their antioxidant and pharmacological activities. The crude extract of was profiled using high-resolution GC-MS and LC-MS/MS techniques to determine possible bioactive compounds that are vital to the antioxidant activity. A total of 52 and 63 bioactive compounds have been detected in GC-MS chromatograms using different solvents (methanol and ethanol) in leaf extracts, representing the presence of certain bioactive compounds.

View Article and Find Full Text PDF

The antioxidant, total phenolic, flavonoid, and anthocyanidin properties of extracts prepared from Cotoneaster frigidus Wall. ex Lindl. "Cornubia" fruit were examined.

View Article and Find Full Text PDF

Background: Potassium plays a crucial role in determining the quality of flue-cured tobacco leaves. Our prior investigations have demonstrated that using potassium-efficient rootstocks through grafting offers a viable solution to the prevalent issue of low potassium levels in Chinese flue-cured tobacco leaves. Nevertheless, the specific molecular mechanisms responsible for the increase in potassium content following grafting in tobacco leaves have yet to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!