AI Article Synopsis

  • Genome sequences of modern human rhinoviruses (HRVs) have not been well-defined, mainly relying on data from the 1960s.
  • Researchers sequenced two isolates, hrv-A101 and hrv-A101-v1, collected about eight years apart, revealing them as a unique strain within HRV-A.
  • The study suggests that these strains resulted from genetic recombination of existing HRV lineages (hrv-65 and hrv-78) and indicates the presence of previously unrecognized HRV-A strains in circulation.

Article Abstract

Genome sequences of human rhinoviruses (HRV) have primarily been from stocks collected in the 1960s, with genomes and phylogeny of modern HRVs remaining undefined. Here, two modern isolates (hrv-A101 and hrv-A101-v1) collected approximately 8 years apart were sequenced in their entirety. Incorporation into our full-genome HRV alignment with subsequent phylogenetic network inference indicated that these represent a unique HRV-A, localized within a distinct divergent clade. They appear to have resulted from recombination of the hrv-65 and hrv-78 lineages. These results support our contention that there are unrecognized distinct HRV-A strains, and that recombination is evident in currently circulating strains.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2910715PMC
http://dx.doi.org/10.1007/s00705-009-0549-8DOI Listing

Publication Analysis

Top Keywords

full-genome sequence
4
sequence analysis
4
analysis novel
4
novel human
4
human rhinovirus
4
rhinovirus strain
4
strain divergent
4
divergent hrv-a
4
hrv-a clade
4
clade genome
4

Similar Publications

Insect-specific RNA viruses detection in Field-Caught Aedes aegypti mosquitoes from Argentina using NGS technology.

PLoS Negl Trop Dis

January 2025

Laboratorio de Ingeniería Genética y Biología Celular y Molecular-Área de virus de insectos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Quilmes, Buenos Aires, Argentina.

Mosquitoes are the primary vectors of arthropod-borne pathogens. Aedes aegypti is one of the most widespread mosquito species worldwide, responsible for transmitting diseases such as Dengue, Zika, and Chikungunya, among other medically significant viruses. Characterizing the array of viruses circulating in mosquitoes, particularly in Aedes aegypti, is a crucial tool for detecting and developing novel strategies to prevent arbovirus outbreaks.

View Article and Find Full Text PDF

Herpes simplex virus type 1 (HSV-1) acyclovir (ACV) resistance is acquired by mutations in the viral thymidine kinase (TK) or DNA polymerase (DNApol) genes. We previously obtained an ACV-resistant clone (HSV-1_VZV_TK_clone α) by sequential passages of HSV-1_VZV-TK, a recombinant virus which lacked its endogenous TK activity and instead expressed the varicella-zoster virus (VZV) TK ectopically. HSV-1_VZV_TK_clone α had been generated using an HSV-1_BAC in the presence of increasing concentrations of ACV.

View Article and Find Full Text PDF

The COVID-19 pandemic caused by the SARS-CoV-2 virus continues to circulate worldwide, causing the deaths of millions of people. The continuous circulation of the virus, its genetic diversity, the emergence of new variants with increased transmissibility, and/or the capacity of the virus to escape from the immune system constitute a major public health concern. In our study, we aimed to characterize SARS-CoV-2 strains in Iraq from the first introduction until the end of 2023, and to identify their variants, lineages, clades, and mutation patterns.

View Article and Find Full Text PDF

Kobuviruses (family , genus ) are enteric viruses that infect a wide range of both human and animal hosts. Much of the evolutionary history of kobuviruses remains elusive, largely due to limited screening in wildlife. Bats have been implicated as major sources of virulent zoonoses, including coronaviruses, henipaviruses, and filoviruses, though much of the bat virome still remains uncharacterized.

View Article and Find Full Text PDF

First identification and whole genome characterization of rotavirus C in pigs in Zambia.

Virology

December 2024

Institute for Vaccine Research and Development, Hokkaido University, Sapporo, 001-0021, Japan; Department of Disease Control, School of Veterinary Medicine, The University of Zambia, Lusaka, 10101, Zambia; One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, 001-0020, Japan; Africa Center of Excellence for Infectious Diseases of Humans and Animals, The University of Zambia, Lusaka, 10101, Zambia. Electronic address:

Rotavirus C (RVC) causes acute gastroenteritis in neonatal piglets. Despite the clinical importance of RVC infection, the distribution and prevalence in pig populations in most African countries remains unknown. In this study, we identified RVC in Zambian pigs by metagenomic analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!