Seasonal effect on heat shock proteins in fish from Kuwait bay.

Bull Environ Contam Toxicol

Environmental Sciences Department, Kuwait Institute for Scientific Research, Safat, 13109, Kuwait.

Published: January 2010

Heat shock proteins (HSP70) play a significant role in adaptation to temperature and have been proposed as an indicator of cellular stress. Since the water temperature in Kuwait's marine area varies from 13 to 35 degrees C from winter to summer, HSP70 could be a valuable tool in aquaculture in Kuwait. HSP70 levels were quantified by Western blotting in liver, muscle and gill tissues of two varieties of native fish species captured during the winter and summer months from both inside and outside the highly stressed Kuwait Bay area. The HSP70 levels did not differ statistically between fish captured from the two sampling areas. The most common response in both species was higher median levels of HSP70 in winter months. This inverse relation between HSP70 levels in the fish and the water temperature may be due to either genetic adaptation in the fish to the hot climatic conditions of the region or other stressors, such as changes in pollutant levels in the surrounding water.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00128-009-9908-0DOI Listing

Publication Analysis

Top Keywords

hsp70 levels
12
heat shock
8
shock proteins
8
kuwait bay
8
water temperature
8
winter summer
8
hsp70
6
fish
5
levels
5
seasonal heat
4

Similar Publications

Oxidative stress, endoplasmic reticulum (ER) stress, and alterations in autophagy activity have been described as prominent factors mediating many pathological processes in chronic kidney disease (CKD). The accumulation of misfolded proteins in the ER may stimulate the unfolded protein response (UPR). The interplay between autophagy and UPR in hemodialysis (HD) patients remains unclear.

View Article and Find Full Text PDF

The most severe form of muscular dystrophy (MD), known as Duchenne MD (DMD), remains an incurable disease, hence the ongoing efforts to develop supportive therapies. The dysregulation of autophagy, a degradative yet protective mechanism activated when tissues are under severe and prolonged stress, is critically involved in DMD. Treatments that harness autophagic capacities therefore represent a promising therapeutic approach.

View Article and Find Full Text PDF

and Regulate Heat Stress Response in Hu Sheep Through Lipid Metabolism via m6A Modification.

Animals (Basel)

January 2025

Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.

In an established hepatocyte lipid deposition heat stress model, the expression levels of and were significantly upregulated ( < 0.05), indicating that and play important roles in the process of lipid deposition heat stress in hepatocytes. Transcriptome and metabolome analyses showed that lipid deposition heat stress had significant effects on the linoleic acid, linolenic acid, glycerophospholipid, and arachidonic acid metabolic pathways in hepatocytes.

View Article and Find Full Text PDF

Quantitative Proteomics Analysis Reveals XDH Related with Ovarian Oxidative Stress Involved in Broodiness of Geese.

Animals (Basel)

January 2025

Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Yangzhou 225009, China.

Studies have demonstrated significant alterations in ovarian oxidative stress levels, ovarian degeneration, and follicular atresia during the broody period in geese. The results of this study showed that during the broody period, geese exhibited degraded ovarian tissues, disrupted follicular development, a thinner granulosa cell layer, and lower levels of ovarian hormones E2, P4, and AMH. Antioxidant activity (GSH, CAT, SOD, T-AOC, and the content of HO) and the mRNA expression levels of antioxidant genes (GPX, SOD-1, SOD-2, CAT, COX-2, and Hsp70) were significantly higher in pre-broody geese compared to laying geese, while the expression of apoptosis-related genes (p53, Caspase-3, and Caspase-9) increased and the anti-apoptotic gene Bcl-2 decreased.

View Article and Find Full Text PDF

Reduced Glutathione Promoted Growth Performance by Improving the Jejunal Barrier, Antioxidant Function, and Altering Proteomics of Weaned Piglets.

Antioxidants (Basel)

January 2025

Jiangxi Province Key Laboratory of Animal Nutrition, Animal Nutrition and Feed Safety Innovation Team, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330006, China.

Reduced glutathione (GSH) is a main nonenzymatic antioxidant, but its effects and underlying mechanisms on growth and intestinal health in weaned piglets still require further assessment. A total of 180 weaned piglets were randomly allotted to 5 groups: a basal diet (CON), and a basal diet supplemented with antibiotic chlortetracycline (ABX), 50 (GSH1), 65 (GSH2), or 100 mg/kg GSH (GSH3). Results revealed that dietary GSH1, GSH2, and ABX improved body weight and the average daily gain of weaned piglets, and ABX decreased albumin content but increased aspartate aminotransferase (AST) activity and the ratio of AST to alanine transaminase levels in plasma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!