Accurate segmentation of tissue microarrays is a challenging topic because of some of the similarities exhibited by normal tissue and tumor regions. Processing speed is another consideration when dealing with imaged tissue microarrays as each microscopic slide may contain hundreds of digitized tissue discs. In this paper, a fast and accurate image segmentation algorithm is presented. Both a whole disc delineation algorithm and a learning based tumor region segmentation approach which utilizes multiple scale texton histograms are introduced. The algorithm is completely automatic and computationally efficient. The mean pixel-wise segmentation accuracy is about 90%. It requires about 1 second for whole disc (1024×1024 pixels) segmentation and less than 5 seconds for segmenting tumor regions. In order to enable remote access to the algorithm and collaborative studies, an analytical service is implemented using the caGrid infrastructure. This service wraps the algorithm and provides interfaces for remote clients to submit images for analysis and retrieve analysis results.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779045PMC
http://dx.doi.org/10.1109/ISBI.2009.5193304DOI Listing

Publication Analysis

Top Keywords

learning based
8
image segmentation
8
tissue microarrays
8
tumor regions
8
segmentation
6
algorithm
5
cagrid-enabled learning
4
based image
4
segmentation method
4
method histopathology
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!