Mutations affecting the heritable maintenance of epigenetic states in maize identify multiple small RNA biogenesis factors including NRPD1, the largest subunit of the presumed maize Pol IV holoenzyme. Here we show that mutations defining the required to maintain repression7 locus identify a second RNA polymerase subunit related to Arabidopsis NRPD2a, the sole second largest subunit shared between Arabidopsis Pol IV and Pol V. A phylogenetic analysis shows that, in contrast to representative eudicots, grasses have retained duplicate loci capable of producing functional NRPD2-like proteins, which is indicative of increased RNA polymerase diversity in grasses relative to eudicots. Together with comparisons of rmr7 mutant plant phenotypes and their effects on the maintenance of epigenetic states with parallel analyses of NRPD1 defects, our results imply that maize utilizes multiple functional NRPD2-like proteins. Despite the observation that RMR7/NRPD2, like NRPD1, is required for the accumulation of most siRNAs, our data indicate that different Pol IV isoforms play distinct roles in the maintenance of meiotically-heritable epigenetic information in the grasses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775721 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1000706 | DOI Listing |
INhibitor of Growth (ING1-5) proteins are epigenetic readers that target histone acetyltransferase (HAT) or histone deacetylase (HDAC) complexes to the H3K4Me3 mark of active transcription. ING5 targets Moz/Morf and HBO1 HAT complexes that alter acetylation of H3 and H4 core histones, affecting gene expression. Previous experiments in vitro indicated that ING5 functions to maintain stem cell character in normal and in cancer stem cells.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Psychiatry, Umass Chan Medical School, Shrewsbury, MA, USA.
Background: The ε4 allele of the apolipoprotein E (APOE4+) genotype and aging synergistically contribute to the risk of Alzheimer's disease (AD), but the mechanisms underlying their influence are not completely understood. The methylation of ELOVL2 DNA accounts for 70% of the variance in the aging epigenetic clock. The ELOVL2 gene is essential for synthesizing long polyunsaturated fatty acids, crucial for cell membrane integrity, inflammation modulation, and energy maintenance.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA.
At the maternal-fetal interface, tightly regulated levels of retinoic acid (RA), the physiologically active metabolite of vitamin A, are required for embryo implantation and pregnancy success. Herein, we utilize mouse models, primary human cells, and pharmacological tools to demonstrate how depletion of RA signaling via RA receptor (RAR) disrupts implantation and progression of early pregnancy. To inhibit RAR signaling during early pregnancy, BMS493, an inverse pan-RAR agonist that prevents RA-induced differentiation, was administered to pregnant mice during the peri-implantation period.
View Article and Find Full Text PDFMedwave
January 2025
Departamento de Psiquiatría, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.
Psychiatric symptoms are frequent in neurocognitive disorders and dementias. Psychotic symptoms, mainly hallucinations and delusions, may appear in up to 50% of cases, influencing morbidity and mortality. Genetic, neurobiological, and environmental factors are involved in their onset.
View Article and Find Full Text PDFPathogens
December 2024
Department of Botany, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India.
Pathogenic fungi represent a diverse group of eukaryotic microorganisms that significantly impact human health and agriculture. In recent years, the role of epigenetic modifications, particularly histone modifications, in fungal pathobiology has emerged as a prominent area of interest. Among these modifications, methylation of histone H3 at lysine-4 (H3K4) has garnered considerable attention for its implications in regulating gene expression associated with diverse cellular processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!