A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A mechanistic niche model for measuring species' distributional responses to seasonal temperature gradients. | LitMetric

A mechanistic niche model for measuring species' distributional responses to seasonal temperature gradients.

PLoS One

Audubon California, Emeryville, California, United States of America.

Published: November 2009

Niche theory is central to understanding how species respond geographically to climate change. It defines a species' realized niche in a biological community, its fundamental niche as determined by physiology, and its potential niche--the fundamental niche in a given environment or geographic space. However, most predictions of the effects of climate change on species' distributions are limited to correlative models of the realized niche, which assume that species are in distributional equilibrium with respect to the variables or gradients included in the model. Here, I present a mechanistic niche model that measures species' responses to major seasonal temperature gradients that interact with the physiology of the organism. I then use lethal physiological temperatures to parameterize the model for bird species in North and South America and show that most focal bird species are not in direct physiological equilibrium with the gradients. Results also show that most focal bird species possess broad thermal tolerances encompassing novel climates that could become available with climate change. I conclude with discussion of how mechanistic niche models may be used to (i) gain insights into the processes that cause species to respond to climate change and (ii) build more accurate correlative distribution models in birds and other species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775628PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0007921PLOS

Publication Analysis

Top Keywords

climate change
16
mechanistic niche
12
bird species
12
niche model
8
seasonal temperature
8
temperature gradients
8
species respond
8
realized niche
8
fundamental niche
8
focal bird
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!