Paramutation involves homologous sequence communication that leads to meiotically heritable transcriptional silencing. We demonstrate that mop2 (mediator of paramutation2), which alters paramutation at multiple loci, encodes a gene similar to Arabidopsis NRPD2/E2, the second-largest subunit of plant-specific RNA polymerases IV and V. In Arabidopsis, Pol-IV and Pol-V play major roles in RNA-mediated silencing and a single second-largest subunit is shared between Pol-IV and Pol-V. Maize encodes three second-largest subunit genes: all three genes potentially encode full length proteins with highly conserved polymerase domains, and each are expressed in multiple overlapping tissues. The isolation of a recessive paramutation mutation in mop2 from a forward genetic screen suggests limited or no functional redundancy of these three genes. Potential alternative Pol-IV/Pol-V-like complexes could provide maize with a greater diversification of RNA-mediated transcriptional silencing machinery relative to Arabidopsis. Mop2-1 disrupts paramutation at multiple loci when heterozygous, whereas previously silenced alleles are only up-regulated when Mop2-1 is homozygous. The dramatic reduction in b1 tandem repeat siRNAs, but no disruption of silencing in Mop2-1 heterozygotes, suggests the major role for tandem repeat siRNAs is not to maintain silencing. Instead, we hypothesize the tandem repeat siRNAs mediate the establishment of the heritable silent state-a process fully disrupted in Mop2-1 heterozygotes. The dominant Mop2-1 mutation, which has a single nucleotide change in a domain highly conserved among all polymerases (E. coli to eukaryotes), disrupts both siRNA biogenesis (Pol-IV-like) and potentially processes downstream (Pol-V-like). These results suggest either the wild-type protein is a subunit in both complexes or the dominant mutant protein disrupts both complexes. Dominant mutations in the same domain in E. coli RNA polymerase suggest a model for Mop2-1 dominance: complexes containing Mop2-1 subunits are non-functional and compete with wild-type complexes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774164 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1000725 | DOI Listing |
Plant Dis
January 2025
Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences,, Chengdu, China;
Potato ( L.) is the third largest food crop globally following rice and wheat, which is consumed by more than 1 billion people worldwide (FAO 2024). In October 2022, tuber rot of potato (cv.
View Article and Find Full Text PDFPlant Dis
December 2024
Korea University, Environmental Science & Ecological Engineering, Seoul, Seoul, Korea (the Republic of), 02841;
Cerastium glomeratum Thuill., known as sticky mouse-ear chickweed, is native to Europe and has become naturalized in the wild on most continents. After its accidental introduction to Korea around the 1980s, it quickly became one of the dominant invasive weeds on the Korean peninsula and is now considered a significant threat to the Korean agroecosystem (Park et al.
View Article and Find Full Text PDFPlant Dis
December 2024
Hubei University, School of Life Sciences, Wuhan, Hubei , China;
Tobacco Fusarium root rot is caused by various Fusarium species, with eleven species reported, among which F. oxysporum and F. solani are main responsible in China (Yang et al.
View Article and Find Full Text PDFPlant Dis
December 2024
Shandong Academy of Agricultural Sciences, Institute of Plant Protection, No.202, Gongyebei Road, Jinan, Shandong, China, 250100;
Fusarium crown rot (FCR) has become one of the most serious diseases affecting wheat production worldwide. To date, many Fusarium species associated with wheat FCR disease have been reported. To gain a deeper understanding of Fusarium species diversity associated with wheat FCR, extensive research was conducted to identify different Fusarium species.
View Article and Find Full Text PDFPlant Dis
December 2024
Universidade Federal Rural do Semi-Arido, Ciências Agronômicas e Florestais, Mossoro, Rio Grande do Norte, Brazil;
Watermelon (), it's an important fruit in Brazil, producing 1.9 million ton/year, occupies the fifth place in the world, (FAO, 2022), but post-harvest diseases are a major limitation, leading to losses of up to 15% (Balasubramaniam et al. 2023).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!