Modulation of Hsf1 activity by novobiocin and geldanamycin.

Biochem Cell Biol

Department of Anatomy and Cell Biology, College of Medicine, 107 Wiggins Rd., University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.

Published: December 2009

Since Hsp90 is a known modulator of HSF1 activity, we examined the effects of two pharmacological inhibitors of Hsp90, novobiocin and geldanamycin, on HSF1 DNA-binding activity in the Xenopus oocyte model system. Novobiocin exhibits antiproliferative activity in culture cells and interacts with a C-terminal ATP-binding pocket on Hsp90, inhibiting Hsp90 autophosphorylation. Treatment of oocytes with novobiocin followed by heat shock results in a dose-dependent decrease in HSF1 DNA-binding and transcriptional activity. Immunoprecipitation experiments demonstrate novobiocin does not alter HSF1 activity through dissociation of Hsp90 from either monomeric or trimerized HSF1, suggesting that the effect of novobiocin on HSF1 is mediated through alterations in Hsp90 autophosphorylation. Geldanamycin binds the N-terminal ATPase site of Hsp90 and inhibits chaperone activity. Geldanamycin treatment of oocytes resulted in a dose-dependent increase in stability of active HSF1 trimers during submaximal heat shock and a delay in disassembly of trimers during recovery. The results suggest that Hsp90 chaperone activity is required for disassembly of HSF1 trimers. The data obtained with novobiocin suggests the C-terminal ATP-binding activity of Hsp90 is required for the initial steps of HSF1 trimerization, whereas the effects of geldanamycin suggest N-terminal ATPase and chaperone activities are required for disassembly of activated trimers. These data provide important insight into the molecular mechanisms by which pharmacological inhibitors of Hsp90 affect the heat shock response.

Download full-text PDF

Source
http://dx.doi.org/10.1139/o09-049DOI Listing

Publication Analysis

Top Keywords

hsf1 activity
12
heat shock
12
hsp90
10
activity
9
hsf1
9
novobiocin geldanamycin
8
pharmacological inhibitors
8
inhibitors hsp90
8
hsf1 dna-binding
8
c-terminal atp-binding
8

Similar Publications

mTOR signalling controls protein aggregation during heat stress and cellular aging in a translation- and Hsf1-independent manner.

J Biol Chem

January 2025

Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Sweden. Electronic address:

The mTOR (mechanistic target of rapamycin) signaling pathway appears central to the aging process as genetic or pharmacological inhibition of mTOR extends lifespan in most eukaryotes tested. While the regulation of protein synthesis by mTOR has been studied in great detail, its impact on protein misfolding and aggregation during stress and aging is less explored. In this study, we identified the mTOR signaling pathway and the linked SEA complex as central nodes of protein aggregation during heat stress and cellular aging, using Saccharomyces cerevisiae as a model organism.

View Article and Find Full Text PDF

Establishment of a CRISPR-Based Lentiviral Activation Library for Transcription Factor Screening in Porcine Cells.

Animals (Basel)

December 2024

Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.

Transcription factors play important roles in the growth and development of various tissues in pigs, such as muscle, fat, and bone. A transcription-factor-scale activation library based on the clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated endonuclease Cas9 (Cas9) system could facilitate the discovery and functional characterization of the transcription genes involved in a specific gene network. Here, we have designed and constructed a CRISPR activation (CRISPRa) sgRNA library, containing 5056 sgRNAs targeting the promoter region of 1264 transcription factors in pigs.

View Article and Find Full Text PDF

Heat shock factor 1 (HSF1) is the critical orchestrator of cell responses to heat shock, and its dysfunction is linked to various diseases. HSF1 undergoes phase separation upon heat shock, and its activity is regulated by post-translational modifications (PTMs). The molecular details underlying HSF1 phase separation, temperature sensing and PTM regulation remain poorly understood.

View Article and Find Full Text PDF

Purpose: Advanced prostate cancer (PCa) is invariably fatal with the androgen receptor (AR) being a major therapeutic target. AR signaling inhibitors have improved overall survival for men with advanced PCa, but treatment resistance is inevitable and includes reactivation of AR signaling. Novel therapeutic approaches targeting these mechanisms to block tumor growth is an urgent unmet clinical need.

View Article and Find Full Text PDF

Hsf1 is essential for proteotoxic stress response in smyd1b-deficient embryos and fish survival under heat shock.

FASEB J

January 2025

Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA.

Article Synopsis
  • Molecular chaperones are essential for maintaining protein balance, and loss of Smyd1b in zebrafish leads to disorganized muscle fibers and increased heat shock protein expression.
  • RNA sequencing revealed that the upregulated heat shock proteins, particularly Hsp70s, are important for myosin folding and assembly in muscle cells.
  • Additionally, Hsf1 is crucial for activating heat shock gene expression during stress, with its absence exacerbating muscle issues in Smyd1b mutants and decreasing survival under heat stress.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!