In this study, we examined the feasibility of using subzonal cell injection with electrofusion for interspecies somatic cell nuclear transfer (iSCNT) to produce sei whale embryos and to improve their developmental capacity by investigating the effect of osmolarity and macromolecules in the culture medium on the in vitro developmental capacity. Hybrid embryos produced by the electrofusion of fetal whale fibroblasts with enucleated porcine oocytes were cultured in modified porcine zygote medium-3 to examine the effects of osmolarity and fetal serum on their in vitro developmental capacity. More than 66% of the whale somatic cells successfully fused with the porcine oocytes following electrofusion. A portion (60 approximately 81%) of the iSCNT whale embryos developed to the two- to four-cell stages, but no embryos were able to reach the blastocyst stage. This developmental arrest was not overcome by increasing the osmolarity of the medium to 360 mOsm or by the addition of fetal bovine or fetal whale serum. Our results demonstrate that sei whale-porcine hybrid embryos may be produced by SCNT using subzonal injection and electrofusion. The pig oocytes partly supported the remodeling and reprogramming of the sei whale somatic cell nuclei, but they were unable to support the development of iSCNT whale embryos to the blastocyst stage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2807263PMC
http://dx.doi.org/10.4142/jvs.2009.10.4.285DOI Listing

Publication Analysis

Top Keywords

sei whale
12
somatic cell
12
whale embryos
12
developmental capacity
12
whale
8
interspecies somatic
8
cell nuclear
8
nuclear transfer
8
pig oocytes
8
injection electrofusion
8

Similar Publications

The blue whale is an endangered and globally distributed species of baleen whale with multiple described subspecies, including the morphologically and genetically distinct pygmy blue whale. North Atlantic and North Pacific populations, however, are currently regarded as a single subspecies despite being separated by continental land masses and acoustic call differences. To determine the degree of isolation among the Northern Hemisphere populations, 14 North Pacific and 6 Western Australian blue whale nuclear and mitochondrial genomes were sequenced and analysed together with 11 publicly available North Atlantic blue whale genomes.

View Article and Find Full Text PDF

Anthropogenic activities impacting marine environments are internationally recognized as welfare issues for wild cetaceans. This study validates a first evidence-based physical indicator for the welfare assessment protocol of humpback (n = 50) and fin whales (n = 50) living in a highly anthropized environment. Visual assessments of body condition, skin health, prevalence of injuries and parasite/epibiont loads were performed using a species-specific multi-scale measuring tool.

View Article and Find Full Text PDF

Parasitic Infections in Stranded Whales and Dolphins in Canary Islands (2018-2022): An Update.

Animals (Basel)

November 2024

Division of Histology and Veterinary Pathology, Atlantic Center for Cetacean Research, University Institute for Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria (ULPGC), Transmontaña, Arucas, 35413 Canary Island, Spain.

The Canary Islands are considered a hot spot for marine species biodiversity. Each stranded cetacean has provided important scientific, biological and pathological information. The morphological identification of parasites in these stranded cetaceans is the main aim of the present article.

View Article and Find Full Text PDF
Article Synopsis
  • Climate change is altering habitats in the Arctic Ocean, affecting migrating baleen whales like blue and fin whales, leading to changes in their range and presence in Arctic waters.
  • A study using passive acoustic monitoring in Fram Strait from 2012 to 2021 reveals that blue whales are primarily present from July to October, with some winter activity, while fin whales peak in mid-summer to autumn with some winter and sporadic spring presence.
  • Environmental factors such as zooplankton mass and sea surface temperature influence the acoustic presence of blue and fin whales, with no significant trends in the timing of their presence over the years, indicating Fram Strait is an important feeding ground for these species.
View Article and Find Full Text PDF

Predicting and mitigating the impacts of anthropogenic ocean noise on marine animals is hindered by a lack of information on hearing in these species. We established a catch-and-release program to temporarily hold adolescent minke whales () for hearing tests during their summer migration. In 2023, two minke whales provided measures of the auditory brainstem response and data on the frequency range of their hearing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!