Postnatal development and puberty are times of strong physical maturation and require large quantities of energy. The hypothalamic neuropeptide melanin-concentrating hormone (MCH) regulates nutrient intake and energy homeostasis, but the underlying mechanisms are not completely understood. Here we use a novel rat knockout model in which the MCH precursor Pmch has been inactivated to study the effects of loss of MCH on energy regulation in more detail. Pmch(-/-) rats are lean, hypophagic, osteoporotic, and although endocrine parameters were changed in pmch(-/-) rats, endocrine dynamics were normal, indicating an adaptation to new homeostatic levels rather than disturbed metabolic mechanisms. Detailed body weight growth and feeding behavior analysis revealed that Pmch expression is particularly important during early rat development and puberty, i.e., the first 8 postnatal weeks. Loss of Pmch resulted in a 20% lower set point for body weight that was determined solely during this period and remained unchanged during adulthood. Although the final body weight is diet dependent, the Pmch-deficiency effect was similar for all diets tested in this study. Loss of Pmch affected energy expenditure in both young and adult rats, although these effects seem secondary to the observed hypophagia. Our findings show an important role for Pmch in energy homeostasis determination during early development and indicate that the MCH receptor 1 system is a plausible target for childhood obesity treatment, currently a major health issue in first world countries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpendo.00154.2009 | DOI Listing |
Nutrients
December 2024
State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing 100094, China.
Background: Long-term fasting demonstrates greater therapeutic potential and broader application prospects in extreme environments than intermittent fasting.
Method: This pilot study of 10-day complete fasting (CF), with a small sample size of 13 volunteers, aimed to investigate the time-series impacts on gut microbiome, serum metabolome, and their interrelationships with biochemical indices.
Results: The results show CF significantly affected gut microbiota diversity, composition, and interspecies interactions, characterized by an expansion of the Proteobacteria phylum (about six-fold) and a decrease in Bacteroidetes (about 50%) and Firmicutes (about 34%) populations.
Int J Mol Sci
January 2025
Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland.
Maximal physical effort induces a disturbance in the body's energy homeostasis and causes oxidative stress. The aim of the study was to determine whether prooxidant-antioxidant balance disturbances and the secretion of adipokines regulating metabolism, induced by maximal intensity exercise, are dependent on body composition in young, healthy, non-obese individuals. We determined changes in the concentration of advanced protein oxidation products (AOPP), markers of oxidative damage to nucleic acids (DNA/RNA/ox), and lipid peroxidation (LPO); catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activity, as well as concentrations of visfatin, leptin, resistin, adiponectin, asprosin, and irisin in the blood before and after maximal intensity exercise in men with above-average muscle mass (NFAT-HLBM), above-average fat mass (HFAT-NLBM), and with average body composition (NFAT-NLBM).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Diabetes and Endocrine Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan.
Omega-3 (ω-3) polyunsaturated fatty acids in fish oil have been shown to prevent diet-induced obesity in lean mice and to promote heat production in adipose tissue. However, the effects of fish oil on obese animals remain unclear. This study investigated the effects of fish oil in obese mice.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Respiratory Therapy, Victor Valley College, Victorville, CA 92395, USA.
Ventilatory drive is modulated by a variety of neurochemical inputs that converge on spatially oriented clusters of cells within the brainstem. This regulation is required to maintain energy homeostasis and is essential to sustain life across all mammalian organisms. Therefore, the anatomical orientation of these cellular clusters during development must have a defined mechanistic basis with redundant genomic variants.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy.
Cancer cells undergo remarkable metabolic changes to meet their high energetic and biosynthetic demands. The Warburg effect is the most well-characterized metabolic alteration, driving cancer cells to catabolize glucose through aerobic glycolysis to promote proliferation. Another prominent metabolic hallmark of cancer cells is their increased reliance on glutamine to replenish tricarboxylic acid (TCA) cycle intermediates essential for ATP production, aspartate and fatty acid synthesis, and maintaining redox homeostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!