14-3-3s are highly conserved abundant eukaryotic proteins essential for viability, at least in lower eukaryotes. We previously showed that they associate with mammalian and yeast replication origins in a cell-cycle-dependent manner, and are involved in the initiation of DNA replication. Here, we present evidence that 14-3-3 proteins are novel regulators of the initiation and elongation steps of DNA replication in Saccharomyces cerevisiae. The results show that the Bmh2 protein, one of the two 14-3-3 homologues in S. cerevisiae, interacts with Mcm2 and Orc2 proteins, binds to ARS1 maximally at the G1 phase, is essential for plasmid stability, and is required for normal S-phase entry and progression. Furthermore, during G1 phase, the Bmh2 protein is required for the association of MCM proteins with chromatin and their maintenance at replication origins. The results reveal that 14-3-3 proteins function as essential factors for the assembly and maintenance of the pre-replication complex during G1 phase.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.044677DOI Listing

Publication Analysis

Top Keywords

14-3-3 proteins
12
dna replication
12
proteins function
8
initiation elongation
8
elongation steps
8
steps dna
8
replication saccharomyces
8
saccharomyces cerevisiae
8
replication origins
8
bmh2 protein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!