Piperidinyl diphenylsulfonyl sulfonamides are a novel class of molecules that have inhibitory binding affinity for sFRP-1. As a secreted protein sFRP-1 inhibits the function of the secreted Wnt glycoprotein. Therefore, as inhibitors of sFRP-1 these small molecules facilitate the Wnt/beta-catenin canonical signaling pathway. Details of the structure-activity relationships and biological activity of this structural class of compounds will be discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2009.11.002DOI Listing

Publication Analysis

Top Keywords

protein sfrp-1
8
piperidinyl diphenylsulfonyl
8
diphenylsulfonyl sulfonamides
8
modulation wnt
4
wnt signaling
4
signaling inhibition
4
inhibition secreted
4
secreted frizzled-related
4
frizzled-related protein
4
sfrp-1
4

Similar Publications

Article Synopsis
  • - The TREAT-AD program aims to create reliable tools for testing hypotheses related to Alzheimer's disease, emphasizing the need for validated research antibodies used in experiments involving drug targets.
  • - Researchers assessed several commercial antibodies targeting specific proteins (Moesin, CD44, Midkine, and sFRP-1) using Western blot analysis on brain tissues from a mouse model with Alzheimer's pathology.
  • - The study found significant increases in the expression of these target proteins in the Alzheimer's model compared to control mice, confirming the antibodies' effectiveness for future research on Alzheimer's therapeutics.
View Article and Find Full Text PDF

A guide to selecting high-performing antibodies for Secreted frizzled-related protein 1 (sFRP-1) for use in Western Blot and immunoprecipitation.

F1000Res

September 2024

Department of Neurology and Neurosurgery, Structural Genomics Consortium, The Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada.

Secreted frizzled-related protein 1 (sFRP-1) is a secreted protein, belonging to the secreted glycoprotein SFRP family. As a modulator of the Wnt/β-catenin signalling pathway, sFRP-1 has implications in human cancers and neurological diseases. If the community had access to well-characterized anti-sFRP-1 antibodies, the reproducibility of sFRP-1 research would be enhanced.

View Article and Find Full Text PDF

Targeting the cochlin/SFRP1/CaMKII axis in the ocular posterior pole prevents the progression of nonpathologic myopia.

Commun Biol

August 2023

Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, 300384, Tianjin, China.

Myopia is a major public health issue. However, interventional modalities for nonpathologic myopia are limited due to its complicated pathogenesis and the lack of precise targets. Here, we show that in guinea pig form-deprived myopia (FDM) and lens-induced myopia (LIM) models, the early initiation, phenotypic correlation, and stable maintenance of cochlin protein upregulation at the interface between retinal photoreceptors and retinal pigment epithelium (RPE) is identified by a proteomic analysis of ocular posterior pole tissues.

View Article and Find Full Text PDF

Chondrogenesis is strictly regulated by several factors, including cytokines, hormones, and extracellular matrix proteins. Mouse teratocarcinoma-derived lineage cells, differentiate into chondrocytes in the presence of insulin. Although ascorbic acid promotes chondrogenic differentiation, the detailed regulative mechanisms underlying its role in chondrogenesis remain unclear.

View Article and Find Full Text PDF

Objective: Cardiac surgery and the use of cardiopulmonary bypass initiate a systemic inflammatory response. Wingless-related integration site (WNT) signaling is part of the innate immunity and has been attributed a major role in the regulation of inflammation. In preclinical research, WNT-5a may sustain an inflammatory response and cause endothelial dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!