The use of dissimilar chromatographic systems in drug impurity profiling can be very advantageous. Screening a new-drug impurity mixture on those systems not only enhances the chance that all impurities are revealed, but also allows choosing a suited system for further method development. In this paper several strategies were evaluated to predict the optimal pH (of the buffer used in the mobile phase) from the screening results. Four or five dissimilar stationary phases were screened at four pH values (between 2.5 and 9.4), in order to obtain maximal information about the composition of the sample and to select one column for the subsequent optimization. Different linear models (straight lines, 2nd and 3rd degree polynomials) based on these experiments were tested for their ability to predict the retention times (t(R)) of the impurities at intermediate pH values. The predicted t(R) values were then used to calculate minimal resolutions and eventually to select an optimal pH at which the highest minimal resolution is predicted. None of the applied models is accurate enough to predict correctly which peaks are worst separated at the indicated optimal pH. However, the best strategy (applying a second degree polynomial describing the t(R) measured at 3 consecutive screening pH values) did succeed in indicating an optimal pH at which a good separation of the impurities is obtained. Unfortunately, the resulting separation quality is not or only slightly better than the best separation obtained during screening. Therefore, it can be concluded that the most (time-) efficient approach to develop an impurity profile of a new drug is to screen it on four or five dissimilar columns at four different pH values and to retain the best screening conditions (without making predictions for intermediate conditions) for further optimization of the organic modifier composition of the mobile phase, and occasionally the temperature and the gradient. This is at least the case when the profiles have a complexity similar to those studied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2009.10.013 | DOI Listing |
Microbiome
January 2025
Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
Background: Maintaining gut health is a persistent and unresolved challenge in the poultry industry. Given the critical role of gut health in chicken performance and welfare, there is a pressing need to identify effective gut health intervention (GHI) strategies to ensure optimal outcomes in poultry farming. In this study, across three broiler production cycles, we compared the metagenomes and performance of broilers provided with ionophores (as the control group) against birds subjected to five different GHI combinations involving vaccination, probiotics, prebiotics, essential oils, and reduction of ionophore use.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Maxim Gorki, 30, Novi Sad, 21000, Serbia.
Wheat (Triticum aestivum L.) productivity and quality can be threatened by soil cadmium (Cd) contamination, posing a concern to food security. Salicylic acid (SA) is an endogenously produced signaling molecule that activates the defense system imparting abiotic stress tolerance in plants.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Ionis Pharmaceuticals, Inc., 2855 Gazelle Ct., Carlsbad, CA 92010. Electronic address:
Complexes formed between aluminum cluster molecules that adopt a Ɛ-Al-Keggin structure and antisense oligonucleotides were observed as new impurity peaks during drug product stability testing. The Ɛ-Al-Keggin molecules were determined to be artifacts of the analysis, originating from contact between antisense oligonucleotide drug product solution and aluminum weigh boats used to prepare the analytical sample solutions The presence of the Ɛ-Al-Keggin molecules was confirmed through synthesis of the Keggin molecule through an established route and subsequent spiking studies. Binding affinity studies revealed that the Ɛ-Al-Keggin bound to oligonucleotide sequences of various lengths (10 to 20 bases) and base compositions, though there is some evidence for preferential binding to 5-methylcytosine-containing sequences.
View Article and Find Full Text PDFBraz J Microbiol
January 2025
Innovation and Drug Discovery, Sava Healthcare Limited, Research Center, MIDC, Block D1, Plot No. 17/6, Chinchwad, Pune, 411019, India.
Plant parts such as roots, bark, leaves, flowers, and fruits that hold ethnopharmacological significance are naturally prone to microbial contamination, influenced by environmental factors like moisture and humidity. This study focuses on assessing the microbial load in the raw material of Tribulus terrestris (TT). The primary bacterium isolated from the pulverized raw material was identified as Bacillus haynesii through 16S rRNA sequencing.
View Article and Find Full Text PDF<b>Background and Objective:</b> Cadmium (Cd) is one of the heavy metal pollutants and its accumulation impacts the sustainability of marine organisms. Current research aimed to isolate and identify the cadmium-reducing bacteria from contaminated coastal sediment in Karangsong Port, Indramayu, Indonesia. The isolates were investigated for their potential to reduce cadmium and showed the cadmium reduction drastically up to 50% at 6 hrs treated under different cadmium concentrations of 0, 5, 1 and 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!