Oscillatory synchronization facilitates communication in neuronal networks and is intimately associated with human cognition. Neuronal activity in the human brain can be non-invasively imaged with magneto- (MEG) and electroencephalography (EEG), but the large-scale structure of synchronized cortical networks supporting cognitive processing has remained uncharacterized. We combined simultaneous MEG and EEG (MEEG) recordings with minimum-norm-estimate-based inverse modeling to investigate the structure of oscillatory phase synchronized networks that were active during visual working memory (VWM) maintenance. Inter-areal phase-synchrony was quantified as a function of time and frequency by single-trial phase-difference estimates of cortical patches covering the entire cortical surfaces. The resulting networks were characterized with a number of network metrics that were then compared between delta/theta- (3-6 Hz), alpha- (7-13 Hz), beta- (16-25 Hz), and gamma- (30-80 Hz) frequency bands. We found several salient differences between frequency bands. Alpha- and beta-band networks were more clustered and small-world like but had smaller global efficiency than the networks in the delta/theta and gamma bands. Alpha- and beta-band networks also had truncated-power-law degree distributions and high k-core numbers. The data converge on showing that during the VWM-retention period, human cortical alpha- and beta-band networks have a memory-load dependent, scale-free small-world structure with densely connected core-like structures. These data further show that synchronized dynamic networks underlying a specific cognitive state can exhibit distinct frequency-dependent network structures that could support distinct functional roles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2009.11.031DOI Listing

Publication Analysis

Top Keywords

alpha- beta-band
12
beta-band networks
12
networks
10
synchronized cortical
8
cortical networks
8
visual working
8
working memory
8
frequency bands
8
bands alpha-
8
cortical
5

Similar Publications

Introduction: Multitasking during flights leads to a high mental workload, which is detrimental for maintaining task performance. Electroencephalography (EEG) power spectral analysis based on frequency-band oscillations and microstate analysis based on global brain network activation can be used to evaluate mental workload. This study explored the effects of a high mental workload during simulated flight multitasking on EEG frequency-band power and microstate parameters.

View Article and Find Full Text PDF

Methodology and Experimental Protocol for Fatigue Analysis in Suggestopedia Teachers.

Brain Sci

November 2024

Institute of Robotics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria.

Background: Among all professions, teaching is significantly affected by psycho-social risks with approximately 33.33% of educators reporting work-related fatigue. Suggestopedia, an effective pedagogical approach developed in Bulgaria, claims to induce positive psychological and cognitive benefits in both teachers and students.

View Article and Find Full Text PDF

Subthalamic nucleus oscillations during facial emotion processing and apathy in Parkinson's disease.

J Affect Disord

January 2025

Center for Functional Neurosurgery, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Electronic address:

Background: Parkinson's disease (PD) is primarily characterized by motor symptoms, but patients also experience a relatively high prevalence of non-motor symptoms, including emotional and cognitive impairments. While the subthalamic nucleus (STN) is a common target for deep brain stimulation to treat motor symptoms in PD, its role in emotion processing is still under investigation. This study examines the subthalamic neural oscillatory activities during facial emotion processing and its association with affective characteristics.

View Article and Find Full Text PDF

Introduction: Time perception is a fundamental cognitive function, the brain mechanisms of which are not fully understood. Recent electroencephalography (EEG) studies have shown that neural oscillations in specific frequency bands may play a role in this process. In the current study, we sought to investigate how neurophysiological activity of cortical structures relates to subjective time estimations.

View Article and Find Full Text PDF

Circuit-based biomarkers distinguishing the gradual progression of Lewy pathology across synucleinopathies remain unknown. Here, we show that seeding of α-synuclein preformed fibrils in mouse dorsal striatum and motor cortex leads to distinct prodromal-phase cortical dysfunction across months. Our findings reveal that while both seeding sites had increased cortical pathology and hyperexcitability, distinct differences in electrophysiological and cellular ensemble patterns were crucial in distinguishing pathology spread between the two seeding sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!