Controlled release properties and final macroporosity of a pectin microspheres-calcium phosphate composite bone cement.

Acta Biomater

Université de Toulouse, CIRIMAT, UPS-INPT-CNRS, Faculté de Pharmacie, 118 Route de Narbonne, 31062 Toulouse Cedex 4, France.

Published: June 2010

The use of calcium phosphate cements (CPC) is restricted by their lack of macroporosity and poor drug release properties. To overcome these two limitations, incorporating degradable polymer microparticles into CPC is an attractive option, as polymer microparticles could help to control drug release and induce macroporosity after degradation. Although few authors have yet tested synthetic polymers, the potentiality of polysaccharides' assuming this role has never been explored. Low-methoxy amidated pectins (LMAP) constitute valuable candidates because of their biocompatibility and ionic and pH sensitivity. In this study, the potentiality of a LMAP with a degree of esterification (DE) of 30 and a degree of amidation (DA) of 19 was explored. The aim of this study was to explore the influence of LMAP microspheres within the composite on the cement properties, drug release ability and final macroporosity after microspheres degradation. Three LMAP incorporation ratios, 2%, 4% and 6% w/w were tested, and ibuprofen was chosen as the model drug. In comparison with the CPC reference, the resulting composites presented reduced setting times and lowered the mechanical properties, which remained acceptable for an implantation in moderate-stress-bearing locations. Sustained release of ibuprofen was obtained on at least 45days, and release rates were found to be controlled by the LMAP ratio, which modulated drug diffusion. After 4months of degradation study, the resulting CPC appeared macroporous, with a maximum macroporosity of nearly 30% for the highest LMAP incorporation ratio, and interconnectivity between pores could be observed. In conclusion, LMAP appear as interesting candidates to generate macroporous bone cements with tailored release properties and macroporosity by adjusting the pectin content within the composites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2009.11.019DOI Listing

Publication Analysis

Top Keywords

release properties
12
drug release
12
final macroporosity
8
polymer microparticles
8
lmap incorporation
8
lmap
7
macroporosity
6
release
6
properties
5
drug
5

Similar Publications

Anti-inflammatory coupled anti-angiogenic airway stent effectively suppresses tracheal in-stents restenosis.

J Nanobiotechnology

January 2025

Department of Interventional Radiology, Key Laboratory of Interventional Radiology of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.

Excessive vascularization during tracheal in-stent restenosis (TISR) is a significant but frequently overlooked issue. We developed an anti-inflammatory coupled anti-angiogenic airway stent (PAGL) incorporating anlotinib hydrochloride and silver nanoparticles using advanced electrospinning technology. PAGL exhibited hydrophobic surface properties, exceptional mechanical strength, and appropriate drug-release kinetics.

View Article and Find Full Text PDF

Physical Isolation Strategy in Multi-Layer Self-Nanoemulsifying Pellets: Improving Dissolution and Drug Loading Efficiency of Ramipril.

J Pharm Sci

January 2025

Department of Pharmaceutics, College of Pharmacy, King Saud University, POBOX-2457, Riyadh 11451, Kingdom of Saudi Arabia; Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia. Electronic address:

Background And Purpose: Liquid self-nanoemulsifying drug delivery systems (SNEDDS) face challenges related to stability, handling, and storage. In particular, lipophilic and unstable drugs, such as ramipril (RMP) and thymoquinone (THQ), face challenges in oral administration due to poor aqueous solubility and chemical instability. This study aimed to develop and optimize multi-layer self-nanoemulsifying pellets (ML-SNEP) to enhance the stability and dissolution of ramipril (RMP) and thymoquinone (THQ).

View Article and Find Full Text PDF

Synergistic therapy with celastrol-curcumin multifunctional nanomedicine: Anti-hepatocellular carcinoma and reduced hepatotoxicity.

Int J Pharm

January 2025

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137 China. Electronic address:

Hepatocellular carcinoma is one of the leading causes of cancer deaths globally and a key hindrance to extending life expectancy. Celastrol (CEL) demonstrates excellent antitumor activity, but faces challenges like low solubility and a narrow therapeutic window, limiting its clinical application. To address these limitations, drug combinations and nano-delivery systems have emerged as effective solutions.

View Article and Find Full Text PDF

In the food industry, time-to-result is crucial for faster release of products, minimising recalls, mitigation of microbial contamination problems and, ultimately, food safety. Carrageenan is isolated from red seaweed (Rhodophyta) and applied in various foods and beverages as a gelling, thickening, texturing, or stabilizing agent due to its hygroscopic properties. Currently, the standard industry plate count method entails a one-hundred-fold dilution of the sample before mixing with molten agar for assessment of the level of microbial contamination in carrageenan samples prior to business-to-business shipment.

View Article and Find Full Text PDF

ROS fueled autonomous sol-gel-sol transitions for on-demand modulation of inflammation in osteoarthritis.

J Control Release

January 2025

School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China. Electronic address:

Osteoarthritis is the most prevalent form of arthritis, and a leading cause of pain and long-term disability. Dysregulation of redox homeostasis is a key feature in the pathological progression of osteoarthritis that amplifies the inflammatory response, aggravates synovitis and accelerates cartilage degradation. Herein, a hemin and chitosan-mediated antioxidant gel inducing ROS conversion (hc-MAGIC) was constructed to targeting oxidative stress for osteoarthritis treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!