Ethylene glycol exposure can lead to the development of renal failure due to the metabolic formation of calcium oxalate monohydrate (COM) crystals. The renal damage is closely linked to the degree of COM accumulation in the kidney and most likely results from a COM-induced injury to proximal tubule (PT) cells. The present studies have measured the binding and internalization of COM by primary cultures of normal PT cells from humans and from Wistar and Fischer-344 rats in order to examine the roles of these uptake processes in the resulting cytotoxicity. Internalization was determined by incubation of cells with [(14)C]-COM at 37 degrees C, removal of bound COM with an EDTA incubation, followed by solubilization of cells, as well as by transmission electron microscopy of COM-exposed cells. COM crystals were internalized by PT cells in time- and concentration-dependent manners. COM crystals were bound to and internalized by rat cells about five times more than by human cells. Binding and internalization values were similar between PT cells from Wistar and Fischer-344 rats, indicating that a differential uptake of COM does not explain the known strain difference in sensitivity to ethylene glycol renal toxicity. Internalization of COM correlated highly with the degree of cell death, which is greater in rat cells than in human cells. Thus, surface binding and internalization of COM by cells play critical roles in cytotoxicity and explain why rat cells are more sensitive to COM crystals. At the same level of COM accumulation after ethylene glycol exposure or hyperoxaluria in vivo, rats would be more susceptible than humans to COM-induced damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxlet.2009.11.013 | DOI Listing |
Pharmaceutics
January 2025
CDL Research, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
Background/objectives: Glioblastoma is the most common and lethal primary brain tumor. Patients often suffer from tumor- and treatment induced vasogenic edema, with devastating neurological consequences. Intracranial edema is effectively treated with dexamethasone.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.
The use of polymeric nanoparticles (NPs) in drug delivery systems offers the advantages of enhancing drug efficacy and minimizing side effects; In this study, L-threonine polyurethane (LTPU) NPs have been fabricated by water-in-oil-in-water emulsion and solvent evaporation using biodegradable and biocompatible LTPU. This polymer was pre-synthesized through the use of an amino acid-based chain extender, desaminotyrosyl L-threonine hexyl ester (DLTHE), where urethane bonds are formed by poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) triblock copolymer and 1,6-hexamethylene diisocyanate (HDI). LTPU is designed to be degraded by hydrolysis and enzymatic activity due to the presence of ester bonds and peptide bonds within the polymer backbone.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
Poly(lactic acid) (PLA) exhibits excellent shape memory properties but suffers from brittleness and a high glass transition temperature (T), limiting its utility in flexible and durable applications. This study explored the modification of PLA properties through the incorporation of poly(ethylene glycol) (PEG), varying in both content (5-20 wt%) and molecular weight (4000-12,000 g/mol), to enhance its suitability for specific applications, such as medical splints. The PLA/PEG blend, containing 15 wt% PEG and with a molecular weight of 12,000 g/mol, exhibited superior shape fixity (99.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Cosmetic and Biomaterials Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.
As the demand for sustainable and innovative solutions in food packaging continues to grow, this study endeavors to introduce a comprehensive exploration of novel active materials. Specifically, we focus on characterizing polylactide-poly(ethylene glycol) (PLA/PEG) films filled with olive leaf extract (OLE; ) obtained via solvent evaporation. Examined properties include surface structure, thermal degradation and mechanical attributes, as well as antibacterial activity.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Polymer Chemistry and Physics Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, H-1117 Budapest, Hungary.
Tuning the critical solution temperature (CST) of thermoresponsive polymers is essential to exploit their immense potential in various applications. In the present study, the effect of PEG-methyl ether methacrylate with a higher molecular weight of 1100 g/mol (mPEGMA) as a comonomer was investigated for its suitability for the CST adjustment of LCST-type polymers. Accordingly, a library of mPEGMA-based copolymers was established with varying compositions () using four main comonomers, namely di(ethylene glycol) ethyl ether acrylate, -isopropyl acrylamide and methacrylamide, and mPEGMA, with different CST values (cloud points, , and clearing points, , by turbidimetry).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!