Purpose: To assess the efficiency of the following imaging algorithm, including intravenous urography (IVU) or computed tomography urography (CTU) based on ultrasonographic (US) selection, in the radiological management of hematuria.
Materials And Methods: One hundred and forty-one patients with hematuria were prospectively evaluated. Group 1 included 106 cases with normal or nearly normal US result and then they were examined with IVU. Group 2 was composed of the remaining 35 cases which had any urinary tract abnormality, and they were directed to CTU. Radiological results were compared with clinical diagnosis.
Results: Ultrasonography and IVU results of 97 cases were congruent in group 1. Eight simple cysts were detected with US and 1 non-obstructing ureter stone was detected with IVU in remaining 9 patients. The only discordant case in clinical comparison was found to have urinary bladder cancer on conventional cystoscopy. Ultrasonography and CTU results were congruent in 30 cases. Additional lesions were detected with CTU (3 ureter stones, 1 ureter TCC, 1 advanced RCC) in remaining 5 patients. Ultrasonography+CTU combination results were all concordant with clinical diagnosis. Except 1 case, radio-clinical agreement was achieved.
Conclusion: Cross-sectional imaging modalities are preferred in evaluation of hematuria. CTU is the method of choice; however the limitations preclude using CTU as first line or screening test. Ultrasonography is now being accepted as a first line imaging modality with the increased sensitivity in mass detection compared to IVU. The US guided imaging algorithm can be used effectively in radiological approach to hematuria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejrad.2009.10.027 | DOI Listing |
Environ Monit Assess
January 2025
School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
This study investigates the effectiveness and efficiency of two topological data analysis (TDA) techniques, the conventional Mapper (CM) and its variant version, the Ball Mapper (BM), in analyzing the behavior of six major air pollutants (NO, PM, PM, O, CO, and SO) across 60 air quality monitoring stations in Malaysia. Topological graphs produced by CM and BM reveal redundant monitoring stations and geographical relationships corresponding to air pollutant behavior, providing better visualization than traditional hierarchical clustering. Additionally, a comparative analysis of topological graph structures was conducted using node degree distribution, topological graph indices, and Dynamic Time Warping (DTW) to evaluate the sensitivity and performance of these TDA techniques.
View Article and Find Full Text PDFPhys Eng Sci Med
January 2025
Physics Department, Instituto Zunino, Obispo Oro 423, X5000BFI, Córdoba, Argentina.
Treatment Planning Systems (TPS) offer algorithms for distortion correction (DC) of Magnetic Resonance (MR) images, whose performances demand proper evaluation. This work develops a procedure using a virtual phantom to quantitatively assess a TPS DC algorithm. Variations of the digital Brainweb MR study were created by introducing known distortions and Control Points (CPs).
View Article and Find Full Text PDFPhys Eng Sci Med
January 2025
Faculty of Engineering, Department of Biomedical Engineering, Universiti Malaya, Kuala Lumpur, Malaysia.
Neointimal coverage and stent apposition, as assessed from intravascular optical coherence tomography (IVOCT) images, are crucial for optimizing percutaneous coronary intervention (PCI). Existing state-of-the-art computer algorithms designed to automate this analysis often treat lumen and stent segmentations as separate target entities, applicable only to a single stent type and overlook automation of preselecting which pullback segments need segmentation, thus limit their practicality. This study aimed for an algorithm capable of intelligently handling the entire IVOCT pullback across different phases of PCI and clinical scenarios, including the presence and coexistence of metal and bioresorbable vascular scaffold (BVS), stent types.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
Purpose: A projection-resolved optical coherence tomography angiography (PR-OCTA) algorithm with slab-specific strategy was applied in polypoidal choroidal vasculopathy (PCV) to differentiate between polyp and branching vascular network (BVN) and improve polyp detection by en face OCTA.
Methods: Twenty-nine participants diagnosed with PCV by indocyanine green angiography (ICGA) and 30 participants diagnosed with typical neovascular age-related macular degeneration (nAMD) were enrolled. Polyps were classified into three categories after using the slab-specific PR algorithm.
Data Brief
December 2024
1601 E Market St, Greensboro, NC 27411, USA.
Effective data representation in machine learning and deep learning is paramount. For an algorithm or neural network to capture patterns in data and be able to make reliable predictions, the data must appropriately describe the problem domain. Although there exists much literature on data preprocessing for machine learning and data science applications, novel data representation methods for enhancing machine learning model performance remain highly absent within the literature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!