Background & Aims: Chronic pancreatitis is characterized by alternating phases of acute inflammation and quiescent disease. Involvement of T-cell responses has been suggested, but pancreatitis-specific T cells have not been described.

Methods: We characterized T-cell responses against pancreatitis, pancreatic carcinoma-associated antigens, and tetanus toxoid in the bone marrow, blood, and/or pancreatitis lesions of patients with pancreatitis, pancreatic cancer, and healthy individuals. T cells were functionally characterized by antigen-dependent secretion of interferon (IFN)-gamma, interleukin (Il)-4, and IL-10, which indicate type 1, type 2, or regulatory T-cell responses, respectively. Regulatory T cells were characterized by multicolor flow cytometry. Isolated regulatory T cells were tested for their capacity to recognize pancreatitis-associated antigens and to suppress conventional T cells in an antigen-dependent manner. T cell-derived cytokines in tissue lesions were quantified by enzyme-linked immunosorbent assay.

Results: Chronic pancreatitis patients showed similar to pancreatic cancer patients and healthy individuals type 1 T-cell responses against tetanus toxoid; however, they exhibited strong IL-10-based T-cell responses against pancreatitis-associated but not pancreatic carcinoma-associated antigens. T cells from pancreatic cancer patients responded to pancreatic cancer-associated but not pancreatitis-associated antigens with IFN-gamma secretion. Pancreatitis-specific IL-10 responses were mediated by IL-10(+)IFN-gamma(-)FoxP3(+) regulatory T cells, which were expanded in the blood, bone marrow, and pancreatitis lesions and possessed the potential to suppress the proliferation of autologous conventional T cells in an antigen-specific manner. Pancreatitis lesions, in comparison with pancreatic carcinomas, contained increased concentrations of IL-10 and reduced levels of IFN-gamma, suggesting pancreatitis-specific activity of regulatory T cells in situ.

Conclusions: Chronic pancreatitis is associated with disease-specific regulatory T-cell responses.

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2009.11.011DOI Listing

Publication Analysis

Top Keywords

t-cell responses
28
chronic pancreatitis
16
regulatory cells
16
regulatory t-cell
12
pancreatitis lesions
12
pancreatic cancer
12
cells
9
pancreatitis associated
8
associated disease-specific
8
disease-specific regulatory
8

Similar Publications

T-cell Acute Lymphoblastic Leukemia (T-ALL) is a subtype of acute lymphoblastic leukemia characterized by the proliferation of abnormal T-cell precursors. Nelarabine, a purine analog, has been approved as a targeted therapy for patients with refractory or relapsed T-ALL. This study aims to evaluate the efficacy and safety of Nelarabine, either as monotherapy or in combination with other therapies, in treating T-ALL.

View Article and Find Full Text PDF

Unlabelled: The tonsils have been identified as a site of replication for Epstein-Barr virus, adenovirus, human papillomavirus, and other respiratory viruses. Human tonsil epithelial cells (HTECs) are a heterogeneous group of actively differentiating cells. Here, we investigated the cellular features and susceptibility of differentiated HTECs to specific influenza viruses, including expression of avian-type and mammalian-type sialic acid (SA) receptors, viral replication dynamics, and the associated cytokine secretion profiles.

View Article and Find Full Text PDF

Circulating T Cell Subsets in Type 1 Diabetes.

Cells

January 2025

Unidad de Investigación Médica en Inmunología, de la UMAE Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico.

Type 1 diabetes (T1D) is a complex disease driven by the immune system attacking the insulin-producing beta cells in the pancreas. Understanding the role of different T cell subpopulations in the development and progression of T1D is crucial. By employing flow cytometry to compare the characteristics of T cells, we can pinpoint potential indicators of treatment response or therapeutic inefficacy.

View Article and Find Full Text PDF

Merkel cell carcinoma (MCC) is a skin cancer that arises due to either Merkel cell polyomavirus infection (MCPyV) or ultraviolet (UV) radiation exposure, presenting primarily in the head and neck region of fair-skinned males. The recent success of PD-(L)1 immune checkpoint inhibitors (ICIs) in locally advanced/metastatic MCC, with an objective response rate (ORR) around 50% and improved survival, as a first-line treatment has moved ICIs to the forefront of therapy for MCC and generated interest in identifying biomarkers to predict clinical response. The MCC tumour microenvironment (TME) contains various components of the adaptive and innate immune system.

View Article and Find Full Text PDF

Purpose Low-dose total skin electron beam therapy (LD-TSEBT) has recently gained popularity in treating mycosis fungoides (MF) due to its reduced toxicity and favorable response rates. Combining accelerated LD-TSEBT with the modified Stanford technique (mST), a condensed cycling approach, offers a promising and convenient option. However, in vivo dosimetry data confirming the effectiveness of this approach is limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!