Background: Mungbean is an important economical crop in Asia. However, genomic research has lagged behind other crop species due to the lack of polymorphic DNA markers found in this crop. The objective of this work is to develop and characterize microsatellite or simple sequence repeat (SSR) markers from genome shotgun sequencing of mungbean.
Result: We have generated and characterized a total of 470,024 genome shotgun sequences covering 100.5 Mb of the mungbean (Vigna radiata (L.) Wilczek) genome using 454 sequencing technology. We identified 1,493 SSR motifs that could be used as potential molecular markers. Among 192 tested primer pairs in 17 mungbean accessions, 60 loci revealed polymorphism with polymorphic information content (PIC) values ranging from 0.0555 to 0.6907 with an average of 0.2594. Majority of microsatellite markers were transferable in Vigna species, whereas transferability rates were only 22.90% and 24.43% in Phaseolus vulgaris and Glycine max, respectively. We also used 16 SSR loci to evaluate phylogenetic relationship of 35 genotypes of the Asian Vigna group. The genome survey sequences were further analyzed to search for gene content. The evidence suggested 1,542 gene fragments have been sequence tagged, that fell within intersected existing gene models and shared sequence homology with other proteins in the database. Furthermore, potential microRNAs that could regulate developmental stages and environmental responses were discovered from this dataset.
Conclusion: In this report, we provided evidence of generating remarkable levels of diverse microsatellite markers and gene content from high throughput genome shotgun sequencing of the mungbean genomic DNA. The markers could be used in germplasm analysis, accessing genetic diversity and linkage mapping of mungbean.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788553 | PMC |
http://dx.doi.org/10.1186/1471-2229-9-137 | DOI Listing |
mBio
January 2025
Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA.
is a bacterium associated with colorectal cancer (CRC) tumorigenesis, progression, and metastasis. Fap2 is a fusobacteria-specific outer membrane galactose-binding lectin that mediates adherence to and invasion of CRC tumors. Advances in omics analyses provide an opportunity to profile and identify microbial genomic features that correlate with the cancer-associated bacterial virulence factor Fap2.
View Article and Find Full Text PDFAPMIS
January 2025
Department of Laboratory Medicine, Clinical Microbiology Örebro University Hospital and Faculty of Medicine and Health at Örebro University, Örebro, Sweden.
Shotgun metagenomics offers a broad detection of pathogens for rapid blood stream infection of pathogens but struggles with often low numbers of pathogens combined with high levels of human background DNA in clinical samples. This study aimed to develop a shotgun metagenomics protocol using blood spiked with various bacteria and to assess bacterial DNA extraction efficiency with human DNA depletion. The Blood Pathogen Kit (Molzym) was used to extract DNA from EDTA-whole blood (WB) and plasma samples, using contrived blood specimens spiked with bacteria for shotgun metagenomics diagnostics via Oxford Nanopore sequencing and PCR-based library preparation.
View Article and Find Full Text PDFMicrobiome
January 2025
Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
Background: The widespread selective pressure of antibiotics in the environment has led to the propagation of antibiotic resistance genes (ARGs). However, the mechanisms by which microbes balance population growth with the enrichment of ARGs remain poorly understood. To address this, we employed microcosm cultivation at different antibiotic (i.
View Article and Find Full Text PDFGigascience
January 2025
Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Science, St. Petersburg, 194064, Russia.
Osteogenic differentiation is crucial in normal bone formation and pathological calcification, such as calcific aortic valve disease (CAVD). Understanding the proteomic and transcriptomic landscapes underlying this differentiation can unveil potential therapeutic targets for CAVD. In this study, we employed RNA sequencing transcriptomics and proteomics on a timsTOF Pro platform to explore the multiomics profiles of valve interstitial cells (VICs) and osteoblasts during osteogenic differentiation.
View Article and Find Full Text PDFEnviron Microbiol
January 2025
Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
The Canadian province of Alberta contains substantial oilsands reservoirs, consisting of bitumen, clay and sand. Extracting oil involves separating bitumen from inorganic particles using hot water and chemical diluents, resulting in liquid tailings waste with ecotoxicologically significant compounds. Ongoing efforts aim to reclaim tailings-affected areas, with protist colonisation serving as one assessment method of reclamation progress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!