G2 accumulation (G2A) is a G-protein coupled receptor, activated by several ligands and stimuli, such as lysophosphatidylcholine (LPC), extracellular low pH and oxidized phospholipids including 9- and 13-hydroxyoctadecadienoic acid, and has been implicated in mediating inflammatory process under oxidative conditions. Recently, it was demonstrated that G2A in monocytes/macrophages plays critical roles in atherosclerosis deterioration, and therefore its transcriptional regulation in monocytes/macrophages is of great interest. Here, we first confirmed the expression of human G2A (hG2A) in lymph nodes, spleen and peripheral blood leukocytes, including monocytes. Thereafter, transcription start site (TSS) of hG2A was determined by 5'-rapid amplification of cDNA ends analysis. In the course of the analysis, we found that two transcriptional variants, hG2A-a and -b, are produced by alternative splicing, resulting in the production of N-terminal different hG2A proteins with similar sensitivity to low pH and LPC. Using a monocytic cell line THP-1 as a model, transcription of hG2A was precisely examined, and we demonstrated that it is dependent both on the chromatin structure around TSS, and on the binding of the transcription factors (c/EBPalpha and beta, Runx1 and Pu.1) to their cis-elements, located at the core promoter just upstream of TSS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-2443.2009.01360.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!