The present study describes the antimicrobial activity of C-AuNp-Amp (chitosan-capped gold nanoparticles coupled with ampicillin). C-AuNp-Amp was synthesized using the wet precipitation method and characterized using FTIR (Fourier-transform IR) spectroscopy and AFM (atomic force microscopy) techniques. The optimal level of ampicillin concentration that couples with the C-AuNp nanocomposite was determined by using UV-visible spectroscopy. The agar-well diffusion method was used to evaluate the antimicrobial activity, and the broth dilution assay was used to determine the MIC (minimum inhibitory concentration). The size of the ellipsoidal C-AuNp-Amp particles was found to be in the range of 50-100 nm. The FTIR spectrum confirms the bonding between amino groups of chitosan and carboxylic groups of ampicillin. The maximum coupling of ampicillin with C-AuNp was found to be 4.07 mg/10 ml. These results revealed the antimicrobial efficacy of C-AuNp-Amp and a 2-fold increase in activity was achieved when compared with that of free ampicillin. By reducing the antibiotic dosage to 50%, the side effects produced by antibiotics can be minimized.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BA20090198DOI Listing

Publication Analysis

Top Keywords

antimicrobial activity
12
ampicillin
5
preparation characterization
4
characterization evaluation
4
evaluation biopolymeric
4
biopolymeric gold
4
gold nanocomposite
4
antimicrobial
4
nanocomposite antimicrobial
4
activity
4

Similar Publications

Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.

View Article and Find Full Text PDF

Exploring Novel Antibiotics by Targeting the GroEL/GroES Chaperonin System.

ACS Pharmacol Transl Sci

January 2025

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China.

Infectious diseases have affected 13.7 million patients, placing a heavy burden on society. Furthermore, inappropriate and unrequited utilization of antibiotics has led to antimicrobial resistance worldwide.

View Article and Find Full Text PDF

Multiple crosslinked, self-healing, and shape-adaptable hydrogel laden with pain-relieving chitosan@borneol nanoparticles for infected burn wound healing.

Theranostics

January 2025

Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China.

Next-generation wound dressings with multiple biological functions hold promise for addressing the complications and pain associated with burn wounds. A hydrogel wound dressing loaded with a pain-relieving drug was developed for treating infected burn wounds. Polyvinyl alcohol chemically grafted with gallic acid (PVA-GA), sodium alginate chemically grafted with 3-aminobenzeneboronic acid (SA-PBA), Zn, and chitosan-coated borneol nanoparticles with anti-inflammatory and pain-relieving activities were combined to afford a nanoparticle-loaded hydrogel with a PVA-GA/Zn/SA-PBA network crosslinked via multiple physicochemical interactions.

View Article and Find Full Text PDF

: Tumor associated macrophages (TAMs) are critical components in regulating the immune statuses of the tumor microenvironments. Although TAM has been intensively studied, it is unclear how mitochondrial proteins such as AGK regulate the TAMs' function. : We investigated the AGK function in TAMs using macrophage-specific deficient mice with B16 and LLC syngeneic tumor models.

View Article and Find Full Text PDF

is a waterborne pathogen responsible for tuberculosis-like infections in cold-blooded animals and is an opportunistic pathogen in humans. is the closest genetic relative of the complex and is a reliable surrogate for drug susceptibility testing. We synthesized and evaluated two nanoparticle (NP) formulations for compatibility with rifampicin, isoniazid, pyrazinamide, and ethambutol (PIRE), the front-line antimycobacterial drugs used in combination against active tuberculosis infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!