The objective of this study was to investigate the factors for enhancing the susceptibility of cancer cells to chemotherapeutic drug by ultrasound microbubbles. Ultrasound (US) combined with phospholipid-based microbubbles (MB) was used to enhance the susceptibility of colon cancer cell line SWD-620 to anticancer drugs Topotecan hydrochloride (TOP). Experiments were designed to investigate the influence of main factors on cell viability and cell inhibition, such as US intensity, MB concentration, drug combination with MB, asynchronous action between US triggered cavitation and drug entering cell, MB particle size. US exposure for 10 sec with US probe power at 0.6 W/cm(2) had satisfied cell viability. Treated with US combined with 15% MB, cell viability maintained more than 85% and cell inhibition 86.16%. Under optimal US combined with MB, TOP showed much higher cell inhibition than that of only TOP group. Cell inhibition under short delayed time (<2 h) for TOP addition did not show obvious difference. In terms of MB particle size, the order of cell inhibition was: Mixture > Micron bubble part > Nanometer bubble part. US combined with MB can enhance the susceptibility of cancer cells to chemotherapeutic drug, which may provide a potential method for US-mediated tumor chemotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/10611860903434043 | DOI Listing |
Sci Rep
December 2024
IRCCS SYNLAB SDN, Naples, 80143, Italy.
LAG3 plays a regulatory role in immunity and emerged as an inhibitory immune checkpoint molecule comparable to PD-L1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. We generated 3D cancer cultures as a model to identify novel molecular biomarkers for the selection of patients suitable for α-LAG3 treatment and simultaneously the possibility to perform an early diagnosis due to its higher presence in breast cancer, also to achieve a theragnostic approach. Our data confirm the extreme dysregulation of LAG3 in breast cancer with significantly higher expression in tumor tissue specimens, compared to non-cancerous tissue controls.
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory for Diagnosis, Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
Influenza virus infections are a serious danger to people's health worldwide as they are responsible for seasonal flu outbreaks. There is an urgent need to improve the effectiveness and durability longevity of the immune response to influenza vaccines. We synthesized the CpG HP021 and examined the impact of it on the immune response to an influenza vaccine.
View Article and Find Full Text PDFSci Rep
December 2024
Central Laboratory, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215000, Jiangsu, China.
Yu-Ping-Feng-San (YPF) is a famous classical Chinese medicine formula known for its ability to boost immunity. YPF has been applied to enhance the immune status of tumor patients in clinical practice. However, there is still a lack of research on its immune regulatory effects and mechanisms in the tumor microenvironment.
View Article and Find Full Text PDFSci Rep
December 2024
College of Biological Sciences and Technology, YiLi Normal University, Yining, 835000, People's Republic of China.
Ice wine is produced from concentrated grape juice obtained by the natural freezing and pressing of grapes. The high sugar content of this juice has an impact on fermentation. To investigate the impact of the initial sugar concentration on the fermentation of ice wine, the initial sugar concentration of Vidal ice grape juice was adjusted to 370, 450, 500 and 550 g/L by the addition of glucose.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Respiratory Medicine, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), No. 61 Jiefang Xi Road, Changsha, Hunan, 410219, China.
Pulmonary arterial hypertension (PAH) is a serious medical condition that causes a failure in the right heart. Two-pore channel 2 (TPC2) is upregulated in PAH, but its roles in PAH remain largely unknown. Our investigation aims at the mechanisms by which TPC2 regulates PAH development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!