Background: Current guidelines for control of Clostridium difficile infection (CDI) suggest that contact precautions be discontinued after diarrhea resolves. However, limited information is available regarding the frequency of skin contamination and environmental shedding of C. difficile during and after treatment.

Design: We conducted a 9-month prospective, observational study involving 52 patients receiving therapy for CDI. Stool samples, skin (chest and abdomen) samples, and samples from environmental sites were cultured for C. difficile before, during, and after treatment. Polymerase chain reaction ribotyping was performed to determine the relatedness of stool, skin, and environmental isolates.

Results: Fifty-two patients with CDI were studied. C. difficile was suppressed to undetectable levels in stool samples from most patients during treatment; however, 1-4 weeks after treatment, 56% of patients who had samples tested were asymptomatic carriers of C. difficile. The frequencies of skin contamination and environmental shedding remained high at the time of resolution of diarrhea (60% and 37%, respectively), were lower at the end of treatment (32% and 14%, respectively), and again increased 1-4 weeks after treatment (58% and 50%, respectively). Skin and environmental contamination after treatment was associated with use of antibiotics for non-CDI indications. Ninety-four percent of skin isolates and 82% of environmental isolates were genetically identical to concurrent stool isolates.

Conclusions: Skin contamination and environmental shedding of C. difficile often persist at the time of resolution of diarrhea, and recurrent shedding is common 1-4 weeks after therapy. These results provide support for the recommendation that contact precautions be continued until hospital discharge if rates of CDI remain high despite implementation of standard infection-control measures.

Download full-text PDF

Source
http://dx.doi.org/10.1086/649016DOI Listing

Publication Analysis

Top Keywords

skin contamination
16
contamination environmental
16
environmental shedding
16
1-4 weeks
12
environmental
8
difficile
8
clostridium difficile
8
difficile treatment
8
difficile infection
8
contact precautions
8

Similar Publications

Human keratinocytes grown at a gas-permeable interface in vitro stratify correctly to generate engineered human epidermis.

Cytotherapy

December 2024

School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand. Electronic address:

Background: One of the key functions of human skin is to provide a barrier, protecting the body from the surrounding environment and maintaining homeostasis of the internal environment. A mature, stratified epidermis is critical to achieve skin barrier function and is particularly important when producing skin grafts in vitro for wound treatment. For decades epidermal stratification has been achieved in vitro by culturing keratinocytes at an air-liquid interface, triggering proliferating basal keratinocytes to differentiate and form all epidermal layers.

View Article and Find Full Text PDF

Background: Francisella tularensis is an aerobic, gram negative coccobacillus bacterium that causes tularemia. F. tularensis spreads primarily through ticks, biting flies, droplet inhalation, contaminated mud or water, or infected animal bites, and it can survive in animal carcasses with the most common mode of transmission occurring via inoculation into the skin and inhalation/ingestion.

View Article and Find Full Text PDF

Peptide Nanofibers and Skin Regeneration.

Adv Exp Med Biol

January 2025

Requalite GmbH, Gräfelfing, Germany.

Peptide nanofibers have been attractive targets for regenerative medicine applications due to their tailorability to be easily functionalized for specific bioactivity, biocompatibility, ease of synthesis, adjustability of their physicochemical characteristics, and lack of biological contamination. Research groups have investigated their use for the regeneration of various tissues, such as bone, cartilage, brain, peripheral nerves, cardiac tissue, vascular tissues, endocrine cells, muscles, etc., for the treatment of degenerative diseases or tissue loss due to accidents or aging.

View Article and Find Full Text PDF

Typhoid Fever as a Cause of Liver Failure in the United States: A Case Report.

Case Rep Gastrointest Med

January 2025

Department of Infectious Diseases, Maimonides Medical Center, Brooklyn, New York 11219, USA.

Typhoid fever is a multisystemic illness caused by and , transmitted fecal orally through contaminated water and food. It is a rare diagnosis in the US, with most cases reported in returning travelers. Hepatitis and cholestasis are rare sequelae of infection.

View Article and Find Full Text PDF

Rising prevalence and drug resistance of in lower respiratory tract infections.

Front Cell Infect Microbiol

January 2025

Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, Jilin, China.

() is a Gram-positive bacterium commonly colonizing the skin and mucosa in healthy individuals and hospitalized patients. Traditionally regarded as a contaminant, is now increasingly recognized as a potential cause of clinical infections, especially after the coronavirus disease pandemic. It has emerged as a pathogen implicated in severe infections, including pneumonia, bacteremia, meningitis, artificial joint infections, abdominal infections, and endocarditis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!