Photoisomerization mechanism of azobenzene in the lowest excited state S(1)(n pi(*)) is investigated by ab initio molecular dynamics (AIMD) simulation with the RATTLE algorithm, based on the state-averaged complete active space self-consistent field method. AIMD simulations show that cis to trans isomerization occurs via two-step rotation mechanism, accompanying rotations of the central NN part and two phenyl rings, and this process can be classified into two types, namely, clockwise and counterclockwise rotation pathways. On the other hand, trans to cis isomerization occurs via conventional rotation pathway where two phenyl rings rotate around the NN bond. The quantum yields are calculated to be 0.45 and 0.28+/-0.14 for cis to trans and trans to cis photoisomerizations, respectively, which are in very good agreement with the corresponding experimental results.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3263918DOI Listing

Publication Analysis

Top Keywords

initio molecular
8
molecular dynamics
8
cis trans
8
isomerization occurs
8
phenyl rings
8
trans cis
8
dynamics simulation
4
simulation photoisomerization
4
photoisomerization azobenzene
4
azobenzene pi*
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!